12 resultados para management method
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
In networks with small buffers, such as optical packet switching based networks, the convolution approach is presented as one of the most accurate method used for the connection admission control. Admission control and resource management have been addressed in other works oriented to bursty traffic and ATM. This paper focuses on heterogeneous traffic in OPS based networks. Using heterogeneous traffic and bufferless networks the enhanced convolution approach is a good solution. However, both methods (CA and ECA) present a high computational cost for high number of connections. Two new mechanisms (UMCA and ISCA) based on Monte Carlo method are proposed to overcome this drawback. Simulation results show that our proposals achieve lower computational cost compared to enhanced convolution approach with an small stochastic error in the probability estimation
Resumo:
Morphological descriptors are practical and essential biomarkers for diagnosis andtreatment selection for intracranial aneurysm management according to the current guidelinesin use. Nevertheless, relatively little work has been dedicated to improve the three-dimensionalquanti cation of aneurysmal morphology, automate the analysis, and hence reduce the inherentintra- and inter-observer variability of manual analysis. In this paper we propose a methodologyfor the automated isolation and morphological quanti cation of saccular intracranial aneurysmsbased on a 3D representation of the vascular anatomy.
Resumo:
The network revenue management (RM) problem arises in airline, hotel, media,and other industries where the sale products use multiple resources. It can be formulatedas a stochastic dynamic program but the dynamic program is computationallyintractable because of an exponentially large state space, and a number of heuristicshave been proposed to approximate it. Notable amongst these -both for their revenueperformance, as well as their theoretically sound basis- are approximate dynamic programmingmethods that approximate the value function by basis functions (both affinefunctions as well as piecewise-linear functions have been proposed for network RM)and decomposition methods that relax the constraints of the dynamic program to solvesimpler dynamic programs (such as the Lagrangian relaxation methods). In this paperwe show that these two seemingly distinct approaches coincide for the network RMdynamic program, i.e., the piecewise-linear approximation method and the Lagrangianrelaxation method are one and the same.
Resumo:
Customer choice behavior, such as 'buy-up' and 'buy-down', is an importantphe-nomenon in a wide range of industries. Yet there are few models ormethodologies available to exploit this phenomenon within yield managementsystems. We make some progress on filling this void. Specifically, wedevelop a model of yield management in which the buyers' behavior ismodeled explicitly using a multi-nomial logit model of demand. Thecontrol problem is to decide which subset of fare classes to offer ateach point in time. The set of open fare classes then affects the purchaseprobabilities for each class. We formulate a dynamic program todetermine the optimal control policy and show that it reduces to a dynamicnested allocation policy. Thus, the optimal choice-based policy caneasily be implemented in reservation systems that use nested allocationcontrols. We also develop an estimation procedure for our model based onthe expectation-maximization (EM) method that jointly estimates arrivalrates and choice model parameters when no-purchase outcomes areunobservable. Numerical results show that this combined optimization-estimation approach may significantly improve revenue performancerelative to traditional leg-based models that do not account for choicebehavior.
Resumo:
The Network Revenue Management problem can be formulated as a stochastic dynamic programming problem (DP or the\optimal" solution V *) whose exact solution is computationally intractable. Consequently, a number of heuristics have been proposed in the literature, the most popular of which are the deterministic linear programming (DLP) model, and a simulation based method, the randomized linear programming (RLP) model. Both methods give upper bounds on the optimal solution value (DLP and PHLP respectively). These bounds are used to provide control values that can be used in practice to make accept/deny decisions for booking requests. Recently Adelman [1] and Topaloglu [18] have proposed alternate upper bounds, the affine relaxation (AR) bound and the Lagrangian relaxation (LR) bound respectively, and showed that their bounds are tighter than the DLP bound. Tight bounds are of great interest as it appears from empirical studies and practical experience that models that give tighter bounds also lead to better controls (better in the sense that they lead to more revenue). In this paper we give tightened versions of three bounds, calling themsAR (strong Affine Relaxation), sLR (strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight LP), and show relations between them. Speciffically, we show that the sPHLP bound is tighter than sLR bound and sAR bound is tighter than the LR bound. The techniques for deriving the sLR and sPHLP bounds can potentially be applied to other instances of weakly-coupled dynamic programming.
Resumo:
The network choice revenue management problem models customers as choosing from an offer-set, andthe firm decides the best subset to offer at any given moment to maximize expected revenue. The resultingdynamic program for the firm is intractable and approximated by a deterministic linear programcalled the CDLP which has an exponential number of columns. However, under the choice-set paradigmwhen the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has beenproposed but finding an entering column has been shown to be NP-hard. In this paper, starting with aconcave program formulation based on segment-level consideration sets called SDCP, we add a class ofconstraints called product constraints, that project onto subsets of intersections. In addition we proposea natural direct tightening of the SDCP called ?SDCP, and compare the performance of both methodson the benchmark data sets in the literature. Both the product constraints and the ?SDCP method arevery simple and easy to implement and are applicable to the case of overlapping segment considerationsets. In our computational testing on the benchmark data sets in the literature, SDCP with productconstraints achieves the CDLP value at a fraction of the CPU time taken by column generation and webelieve is a very promising approach for quickly approximating CDLP when segment consideration setsoverlap and the consideration sets themselves are relatively small.
Resumo:
We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.
Resumo:
Increasing anthropogenic pressures urge enhanced knowledge and understanding of the current state of marine biodiversity. This baseline information is pivotal to explore present trends, detect future modifications and propose adequate management actions for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still poorly understood. There is currently no single sampling method that has been demonstrated to be sufficiently representative to ensure adequate community assessment and monitoring in this habitat. Therefore, we propose a rapid non-destructive protocol for biodiversity assessment and monitoring of coralligenous outcrops providing good estimates of its structure and species composition, based on photographic sampling and the determination of presence/absence of macrobenthic species. We used an extensive photographic survey, covering several spatial scales (100s of m to 100s of km) within the NW Mediterranean and including 2 different coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum assemblage (CRA). This approach allowed us to determine the minimal sampling area for each assemblage (5000 cm² for PCA and 2500 cm²for CRA). In addition, we conclude that 3 replicates provide an optimal sampling effort in order to maximize the species number and to assess the main biodiversity patterns of studied assemblages in variability studies requiring replicates. We contend that the proposed sampling approach provides a valuable tool for management and conservation planning, monitoring and research programs focused on coralligenous outcrops, potentially also applicable in other benthic ecosystems
Resumo:
The Universitat Oberta de Catalunya (UOC) is an online university that has innovation as a transversal feature in all its activities and processes. Therefore, innovation is present in the annual objectives of all the academic and management departments in order to increase student satisfaction. UOC stimulates innovation by funding strategic projects as well as organizing regular internal calls for small projects which brings about innovative academic and management proposals. In this paper we present the method for evaluating teaching and management innovations through internal calls (APLICA), by selecting which initiatives are suitable to become strategic innovative projects (INNOVA) or which features should compose any application available at the OpenApps platform. Besides, general indicators used by the Innovation Program to evaluate the activities carried out are also reported.
Resumo:
The aim of this study is to provide an instrument for measuring service quality in sports enterprises from the point of view of the customers. For this purpose we intend to elaborate an enquiry starting out from a more general scale called SERVIQUAL. We have limited our research project to sports enterprises where the customer participates actively, i.e., we have excluded sports clubs and other organizations which offer sport as entertainment. Our choice is mainly due to the fact that few studies have been carried out in this area and that sports has been earning an increasing amount of adepts during the last decades in Spain. The DELPHI method has been applied with the collaboration of a panel of experts in order to evaluate the viability and adequacy of the modified SERVQUAL scale.
Resumo:
Background: The control of gastric residual volume (GRV) is a common nursing intervention in intensive care; however the literature shows a wide variation in clinical practice regarding the management of GRV, potentially affecting patients" clinical outcomes. The aim of this study is to determine the effect of returning or discarding GRV, on gastric emptying delays and feeding, electrolyte and comfort outcomes in critically ill patients. Method: A randomised, prospective, clinical trial design was used to study 125 critically ill patients, assigned to the return or the discard group. Main outcome measure was delayed gastric emptying. Feeding outcomes were determined measuring intolerance indicators, feeding delays and feeding potential complications. Fluid and electrolyte measures included serum potassium, glycaemia control and fluid balance. Discomfort was identified by significant changes in vital signs. Results: Patients in both groups presented similar mean GRV with no significant differences found (p=0.111), but participants in the intervention arm showed a lower incidence and severity of delayed gastric emptying episodes (p=0.001). No significant differences were found for the rest of outcome measurements, except for hyperglycaemia. Conclusions: The results of this study support the recommendation to reintroduce gastric content aspirated to improve GRV management without increasing the risk for potential complications.