29 resultados para lipid-peroxidation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Mussels (Mytilus edulis) were exposed to cultures of the toxic dinoflagellate Alexandrium fundyense or the non-toxic alga Rhodomonas sp. to evaluate the effects of the harmful alga on the mussels and to study recovery after discontinuation of the A. fundyense exposure. Mussels were exposed for 9 days to the different algae and then all were fed Rhodomonas sp. for 6 more days. Samples of hemolymph for hemocyte analyses and tissues for histology were collected before the exposure and periodically during exposure and recovery periods. Mussels filtered and ingested both microalgal cultures, producing fecal pellets containing degraded, partially degraded, and intact cells of both algae. Mussels exposed to A. fundyense had an inflammatory response consisting of degranulation and diapedesis of hemocytes into the alimentary canal and, as the exposure continued, hemocyte migration into the connective tissue between the gonadal follicles. Evidence of lipid peroxidation, similar to the detoxification pathway described for various xenobiotics, was found; insoluble lipofuchsin granules formed (ceroidosis), and hemocytes carried the granules to the alimentary canal, thus eliminating putative dinoflagellate toxins in feces. As the number of circulating hemocytes in A. fundyense-exposed mussels became depleted, mussels were immunocompromised, and pathological changes followed, i.e., increased prevalences of ceroidosis and trematodes after 9 days of exposure. Moreover, the total number of pathological changes increased from the beginning of the exposure until the last day (day 9). After 6 days of the exposure, mussels in one of the three tanks exposed to A. fundyense mass spawned; these mussels showed more severe effects of the toxic algae than non-spawning mussels exposed to A. fundyense. No significant differences were found between the two treatments during the recovery period, indicating rapid homeostatic processes in tissues and circulating hemocytes.
Resumo:
The main difficulty in the successful treatment of metastatic melanoma is that this type of cancer is known to be resistant to chemotherapy. Chemotherapy remains the treatment of choice, and dacarbazine (DTIC) is the best standard treatment. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and antimetastatic properties. The objective of this study was to evaluate the signaling pathways involved in melanoma cell death after treatment with DM-1 compared to the standard agent for melanoma treatment, DTIC. Cell death was evaluated by flow cytometry for annexin V and iodide propide, cleaved caspase 8, and TNF-R1 expression. Hoechst 33342 staining was evaluated by fluorescent microscopy; lipid peroxidation and cell viability (MTT) were evaluated by colorimetric assays. The antiproliferative effects of the drugs were evaluated by flow cytometry for cyclin D1 and Ki67 expression. Mice bearing B16F10 melanoma were treated with DTIC, DM-1, or both therapies. DM-1 induced significant apoptosis as indicated by the presence of cleaved caspase 8 and an increase in TNF-R1 expression in melanoma cells. Furthermore, DM-1 had antiproliferative effects in this the same cell line. DTIC caused cell death primarily by necrosis, and a smaller melanoma cell population underwent apoptosis. DTIC induced oxidative stress and several physiological changes in normal melanocytes, whereas DM-1 did not significantly affect the normal cells. DM-1 antitumor therapy in vivo showed tumor burden decrease with DM-1 monotherapy or in combination with DTIC, besides survival rate increase. Altogether, these data confirm DM-1 as a chemotherapeutic agent with effective tumor control properties and a lower incidence of side effects in normal cells compared to DTIC.
Resumo:
Background:Our objective is to determine the activity of the antioxidant defense system at admission in patients with early onset first psychotic episodes compared with a control group. Methods: Total antioxidant status (TAS) and lipid peroxidation (LOOH) were determined in plasma. Enzyme activities and total glutathione levels were determined in erythrocytes in 102 children and adolescents with a first psychotic episode and 98 healthy controls. Results: A decrease in antioxidant defense was found in patients, measured as decreased TAS and glutathione levels. Lipid damage (LOOH) and glutathione peroxidase activity was higher in patients than controls. Our study shows a decrease in the antioxidant defense system in early onset first episode psychotic patients. Conclusions: Glutathione deficit seems to be implicated in psychosis, and may be an important indirect biomarker of oxidative stress in early-onset schizophrenia. Oxidative damage is present in these patients, and may contribute to its pathophysiology.
Resumo:
Dietary fatty acid supply can affect stress response in fish during early development. Although knowledge on the mechanisms involved in fatty acid regulation of stress tolerance is scarce, it has often been hypothesised that eicosanoid profiles can influence cortisol production. Genomic cortisol actions are mediated by cytosolic receptors which may respond to cellular fatty acid signalling. An experiment was designed to test the effects of feeding gilthead sea-bream larvae with four microdiets, containing graded arachidonic acid (ARA) levels (0·4, 0·8, 1·5 and 3·0 %), on the expression of genes involved in stress response (steroidogenic acute regulatory protein, glucocorticoid receptor and phosphoenolpyruvate carboxykinase), lipid and, particularly, eicosanoid metabolism (hormone-sensitive lipase, PPARα, phospholipase A2, cyclo-oxygenase-2 and 5-lipoxygenase), as determined by real-time quantitative PCR. Fish fatty acid phenotypes reflected dietary fatty acid profiles. Growth performance, survival after acute stress and similar whole-body basal cortisol levels suggested that sea-bream larvae could tolerate a wide range of dietary ARA levels. Transcription of all genes analysed was significantly reduced at dietary ARA levels above 0·4 %. Nonetheless, despite practical suppression of phospholipase A2 transcription, higher leukotriene B4 levels were detected in larvae fed 3·0 % ARA, whereas a similar trend was observed regarding PGE2 production. The present study demonstrates that adaptation to a wide range of dietary ARA levels in gilthead sea-bream larvae involves the modulation of the expression of genes related to eicosanoid synthesis, lipid metabolism and stress response. The roles of ARA, other polyunsaturates and eicosanoids as signals in this process are discussed.
Lipid reserves of red mullet (Mullus barbatus) during pre-spawning in the northwestern Mediterranean
Resumo:
Lipid reserves are a particularly important attribute of fishes because they have a large influence on growth, reproduction and survival. This study analyses the lipid content of red mullet (Mullus barbatus) pre-spawners in three different areas of the northwestern Mediterranean in relation to trawling activities and river runoff. The muscle lipid was considered as an indicator of the somatic condition of individuals whilst the gonad lipid was used as a proxy of the energy invested in reproduction. The results show that fish with the highest muscle lipid levels inhabited the area where fishing impact was lowest. Since the abundance and biomass of polychaetes, which represent the main food source for red mullet, were found to be lower in trawled zones than in unfished ones, we suggest that differences in the muscle lipid levels between areas might be attributed to variation in prey abundance in relation to fishing impact. However, no impact of river runoff on lipid reserves of red mullet was observed. The results also show that muscle and gonad lipid reserves are not related to each other during pre-spawning
Resumo:
This study analyses for the first time the lipid (energy) reserves of European hake (Merluccius merluccius) in the north-western Mediterranean from an ecophysiological perspective. Results show that there is a progressive accumulation of lipids in the liver of maturing hake -where the bulk of the fat is stored- as individuals grow. Results also indicate that female pre-spawners expend much energy on reproductive activities since they present lower liver lipid reserves than juveniles and maturing individuals. Furthermore, results show that female pre-spawners with higher lipid reserves in their livers had a higher amount of lipids in their ovaries, suggesting that maternal condition (spawner quality) may affect the reproductive potential of hake. Overall, the results of this study suggest that the analysis of liver lipid reserves during pre-spawning, along with the evaluation of the gonadosomatic index and the consideration of the reproductive stage, can contribute to improve the estimation of the reproductive potential of gadoid species such as hake
Resumo:
Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
A mechanism of extraction of tubular membranes from a lipid vesicle is presented. A concentration gradient of anchoring amphiphilic polymers generates tubes from budlike vesicle protrusions. We explain this mechanism in the framework of the Canham-Helfrich model. The energy profile is analytically calculated and a tube with a fixed length, corresponding to an energy minimum, is obtained in a certain regime of parameters. Further, using a phase-field model, we corroborate these results numerically. We obtain the growth of tubes when a polymer source is added, and the budlike shape after removal of the polymer source, in accordance with recent experimental results.
Resumo:
Oleoyl-estrone (OE) is an adipose-derived signal that decreases energy intake and body lipid, maintaining energy expenditure and glycemic homeostasis. Glucocorticoids protect body lipid and the metabolic status quo. We studied the combined effects of OE and corticosterone in adrenalectomized female rats: daily OE gavages (0 or 10 nmol/g) and slow-release corticosterone pellets at four doses (0, 0.5, 1.7, and 4.8 mg/d). Intact and sham-operated controls were also included. After 8 d, body composition and plasma metabolites and hormones were measured. OE induced a massive lipid mobilization (in parallel with decreased food intake and maintained energy expenditure). Corticosterone increased fat deposition and inhibited the OE-elicited mobilization of body energy, even at the lowest dose. OE enhanced the corticosterone-induced rise in plasma triacylglycerols, and corticosterone blocked the OE-induced decrease in leptin. High corticosterone and OE increased insulin resistance beyond the effects of corticosterone alone. The presence of corticosterone dramatically affected OE effects, reversing its decrease of body energy (lipid) content, with little or no change on food intake or energy expenditure. The maintenance of glycemia and increasing insulin in parallel to the dose of corticosterone indicate a decrease in insulin sensitivity, which is enhanced by OE. The reversal of OE effects on lipid handling, insulin resistance, can be the consequence of a corticosterone-induced OE resistance. Nevertheless, OE effects on cholesterol were largely unaffected. In conclusion, corticosterone administration effectively blocked OE effects on body lipid and energy balance as well as insulin sensitivity and glycemia.
Resumo:
En internet encontramos gran cantidad de información científico-técnica cuya validez no suele estar controlada por comités correctores. Para aprovechar estos recursos es necesario filtrar y facilitar el acceso del usuario a la información. En este artículo se expone la experiencia práctica en el desarrollo de una página WEB centrada en las actividades del grupo de investigación «Calidad Nutricional y Tecnología de los Lípidos». Los objetivos de esta página WEB fueron los siguientes: difusión de las actividades del grupo de investigación, aprovechar los recursos que ofrece internet y fomentar y facilitar su uso. Esta experiencia permitió presentar una metodología de trabajo eficaz para conseguir estos objetivos. Finalmente, se presentan un gran número de direcciones WEB agrupadas por apartados en el ámbito de los lípidos. Estas direcciones han sido rigurosamente seleccionadas, entre un gran número de referencias consultadas, siguiendo una serie de criterios que se discuten en este trabajo, para ofrecer aquellas que presentan un mayor interés práctico.
Resumo:
Lipid rafts, defined as domains rich in cholesterol and sphingolipids, are involved in many important plasma membrane functions. Recent studies suggest that the way cells handle membrane cholesterol is fundamental in the formation of such lateral heterogeneities. We propose to model the plasma membrane as a nonequilibrium phase-separating system where cholesterol is dynamically incorporated and released. The model shows how cellular regulation of membrane cholesterol may determine the nanoscale lipid organization when the lipid mixture is close to a phase separation boundary, providing a plausible mechanism for raft formation in vivo.
Resumo:
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Resumo:
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase,SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.