14 resultados para leaf fertilization
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Abstract: The use of an enriched CO2 atmosphere in tree nurseries has been envisaged as a promising technique to increase productivity and to obtain seedlings with a higher root/shoot ratio, an essential trait to respond to water stress in Mediterranean-type ecosystems. In that framework, we have analyzed the effects of three levels of atmospheric CO2 concentration (350, 500 and 700 ppm) on the germination rate, growth and morphology of seedlings of two Mediterranean oaks used in reforestation programs: the evergreen Quercus ilex L. and the deciduous Quercus cerrioides Wilk. et Costa. CO2 enrichment increased the germination rate of Q. cerrioides (from 70±7 to 81±3 %) while it decreased that of Q. ilex (from 71±10 to 41±12 %). Seedlings of both species increased approximately 60% their total biomass in response to CO2 enrichment but at two different CO2 concentrations: 500 ppm for Q. cerrioides and 700 ppm for Q. ilex. This increase in seedlings biomass was entirely due to an augmentation of root biomass. Considering germination and biomass partitioning, an enriched CO2 atmosphere might not be appropriate for growing Mediterranean evergreen oaks, such as Q. ilex, since it reduces acorn germination and the only gains in root biomass occur at a high concentration (700 ppm). On the other hand, a moderate CO2 enrichment (500 ppm) appears as a promising nursery technique to stimulate the germination, growth and root/shoot ratio of deciduous oaks, such as Q. cerrioides. Resumen: El uso de una atmósfera enriquecida en CO2 durante la fase de vivero puede contribuir a aumentar la producción viverÃstica, a la vez que ayudar a conseguir plántulas con una mayor relación biomasa subterránea/biomasa aérea, más adecuadas para hacer frente al severo estrés hÃdrico que generalmente limita el éxito de las repoblaciones en el clima Mediterráneo. En este estudio hemos analizado el efecto de tres niveles de abonado carbónico atmosférico (350, 500 y 750 ppm) en la germinación y morfologÃa de plántulas de encina (Quercus ilex) y roble cerrioide (Quercus cerrioides). Una atmósfera enriquecida en CO2 incrementó la germinación de Q. cerrioides (de 70±7 a 81±3 %) mientras que disminuyó la de Q. ilex (de 71±10 a 41±12 %). Las plántulas de ambas especies incrementaron aproximadamente un 60% su biomasa en respuesta a una mayor concentración de CO2, aunque esta respuesta se produjo a diferentes dosis: 500 ppm en Q. cerrioides y 700 ppm en Q. ilex. El aumento en la biomasa total de las plántulas se debió enteramente a un mayor desarrollo de su sistema radical, Considerando tanto la germinación como los efectos sobre la relación biomasa subterránea/biomasa aérea, una atmósfera enriquecida en CO2 no parece ser un tratamiento adecuado para la producción en vivero de plántulas de Q.ilex, puesto que diminuye su germinación y solo aumenta su sistema radicular a dosis muy elevadas (700 ppm). Por el contrario, un aumento moderado en la concentración de CO2 (500 ppm) aparece como una técnica interesante para estimular el crecimiento y obtener plántulas de Q. cerrioides con un sistema radical más desarrollado.
Resumo:
RESUMEN El aumento del CO2 atmosférico debido al cambio global y/o a las prácticas hortícolas promueve efectos directos sobre crecimiento vegetal y el desarrollo. Estas respuestas pueden ocurrir en ecosistemas naturales, pero también se pueden utilizar para aumentar la producción de algunas plantas y de algunos compuestos secundarios. El actual trabajo intenta estudiar los efectos del enriquecimiento atmosférico del CO2 bajo condiciones de invernadero en el crecimiento y la concentración y la composición de metabolitos secundarios de Taxus bacatta, Hypericum perforatum y Echinacea purpurea en condiciones ambientales mediterráneas. La fertilización del CO2 muestra perspectivas interesantes para la mejorara y aplicabilidad de técnicas hortícolas para aumentar productividad de plantas medicinales, a pesar de diferencias claras entre la especie. En general esta técnica promueve aumentos importantes y significativos en producción primaria y, en algunos casos, también en compuestos secundarios. Esto tiene una gran importancia hortícola porque la productividad a nivel de cosecha total aumenta, directamente porque se aumenta la concentración e indirectamente porque se aumenta la biomasa. SUMMARY The increase of atmospheric CO2 due to global change and/or horticultural practices promotes direct effects on plant growth and development. These responses may occur in natural ecosystems, but also can be used to increase the production of some plants and some secondary compounds. Present work tries to study the effects of atmospheric CO2 enrichment under greenhouse conditions on growth and in the concentration and composition of secondary metabolites of Taxus bacatta, Hypericum perforatum and Echinacea purpurea under Mediterranean environmental conditions. CO2 fertilization shows interesting perspectives to increase and improve horticultural techniques in order to increase plant medicinal productivity, in spite of clear differences among the species. In general this technique promotes important and significant increases in primary productivity and, in some cases, also in secondary compounds. This has a great horticultural relevance because the total productivity of this kind of products increase at crop level, directly because concentration is increased and /or indirectly because biomass is increased. RESUM L'augment del CO2 atmosfèric a causa del canvi global i/o a les pràctiques hortícoles promou efectes directes sobre creixement vegetal i el desenvolupament. Aquestes respostes poden ocórrer en ecosistemes naturals, però també es poden utilitzar per a augmentar la producció d'algunes plantes i d'alguns compostos secundaris. L'actual treball intenta estudiar els efectes de l'enriquiment atmosfèric del CO2 sota condicions d'hivernacle en el creixement i la concentració i la composició de metabòlits secundaris de Taxus bacatta, Hypericum perforatum i Echinacea purpurea en condicions ambientals mediterrànies. La fertilització del CO2 mostra perspectives interessants per a la millora i aplicabilitat de tècniques hortícoles per a augmentar productivitat de plantes medicinals, a pesar de diferències clares entre l'espècie. En general aquesta tècnica promou augments importants i significatius en producció primària i, en alguns casos, també en compostos secundaris. Això té una gran importància hortícola perquè la productivitat a nivell de collita total augmenta, directament perquè s'augmenta la concentració i indirectament perquè s'augmenta la biomassa.
Resumo:
Climate change has been taking place at unprecedented rates over the past decades. These fast alterations caused by human activities are leading to a global warming of the planet. Warmer temperatures are going to have important effects on vegetation and especially on tropical forests. Insects as well will be affected by climate change. This study tested the hypothesis that higher temperatures lead to a higher insect pressure on vegetation. Visual estimations of leaf damage were recorded and used to assess the extent of herbivory in nine 0.1ha plots along an altitudinal gradient, and therefore a temperature gradient. These estimations were made at both a community level and a species level, on 2 target species. Leaf toughness tests were performed on samples from the target species from each plot. Results showed a strong evidence of increasing insect damage along increasing temperature, with no significant effect from the leaf toughness.
Resumo:
According to the IPCC (2007), the Mediterranean basin is expected to suffer important changes in temperature and precipitation in the next few decades, leading the climate warmer and dryer. Therefore, it is necessary to determine the possible effects of increased drought on species with different structural and physiological traits, to be able to predict possible changes in the structure and composition of Mediterranean forests. Moreover, it will be necessary to assess whether traditional management practices can mitigate the effects of climate change on these forests. The main aim of this study has been to analyze the effects of increased drought on the mortality, growth and resprouting patterns of two co-occurring Mediterranean oak species with contrasting leaf habit (the evergreen Quercus ilex and the winter-deciduous Quercus cerrioides), and to assess the effects of selective thinning on their response to increased drought. Our results show a differential effect of increased drought between species: no differences were observed in the growth of Q. ilex while Q. cerrioides reduced its growth under increased drought conditions. Selective thinning reduced the negative effects of increased drought on tree growth, although this beneficial effect tended to decrease during the experiment. Our results show that increasing aridity in Mediterranean areas can be a constraining factor for deciduous oaks, thus potentially causing their decline in mixed forests and favouring their substitution by the evergreen congeneric species. However, as seen in this study, management can strongly encourage growth both for deciduous and evergreen species, thus reversing the effects of increased water stress on Mediterranean coppices.
Resumo:
• Quercus ilex L., the dominant species in Mediterranean forests and one with a great capacity for resprouting after disturbances, is threatened by the expected increase in fire frequency and drought associated with climate change. • The aim of this study was to determine the contribution of photosynthesis limitants, especially mesophyll conductance (gmes ) during this species’ resprouting and under summer drought. • Resprouts showed 5.3-fold increased gmes and 3.8-fold increased stomatal conductance (gs) atmidday with respect to leaves of undisturbed individuals. With increased drought, structural changes (decreased density and increased thickness) in resprouts contributed to the observed higher photosynthesis and increased gmes. However, gmes only partially depended on leaf structure, and was also under physiological control. Resprouts also showed lower non-stomatal limitations (around 50% higher carboxylation velocity (Vc,max) and capacity for ribulose-1,5-bisphosphate regeneration (Jmax)). A significant contribution of gmes to leaf carbon isotope discrimination values was observed. • gmes exhibits a dominant role in photosynthesis limitation in Q. ilex and is regulated by factors other than morphology. During resprouting after disturbances, greater capacity to withstand drought, as evidenced by higher gmes , gs and lower non-stomatal limitants, enables increased photosynthesis and rapid growth.
Resumo:
Leaf litter inputs and retention play an important role in ecosystem functioning in forested streams. We examined colonization of leaves by microbes (bacteria, fungi, and protozoa) and fauna in Fuirosos, an intermittent forested Mediterranean stream. Black poplar (Populus nigra) and plane (Platanus acerifolia) leaf packs were placed in the stream for 4 mo. We measured the biomasses and calculated the densities of bacteria, fungi, protozoa, meiofauna, and macroinvertebrates to determine their dynamics and potential interactions throughout the colonization process. Colonization was strongly correlated with hydrological variability (defined mainly by water temperature and discharge). The 1st week of colonization was characterized by hydrological stability and warm water temperatures, and allocation of C from microbial to invertebrate compartments on the leaf packs was rapid. Clumps of fine particulate organic matter (FPOM) were retained by the leaf packs, and enhanced rapid colonization by microfauna and meiofaunal collector-gatherers (ostracods and copepods). After 2 wk, an autumnal flood caused a 20-fold increase in water flow. Higher discharge and lower water temperature caused FPOM-related fauna to drift away from the packs and modified the subsequent colonization sequence. Fungi showed the highest biomass, with similar values to those recorded at the beginning of the experiment. After 70 d of postflood colonization, fungi decreased to nearly 40% of the total C in the leaf packs, whereas invertebrates became more abundant and accounted for 60% of the C. Natural flood occurrence in Mediterranean streams could be a key factor in the colonization and processing of organic matter.
Resumo:
Presentem l'estudi taxonòmic dels représentants d'Euphorbia subsect. Esula a la Península Ibèrica. Prèviament, s'inclou un primer capítol dedicai a l'estudi de les epidermis foliars i un segon capítol sobre nombres cromosòmics...
Resumo:
Photosynthetic activity of cereals has traditionally been studied using leaves, thus neglecting the role of other organs such as ears. Here, we studied the effects of water status and genotypes on the photosynthetic activity of the flag leaf blade and the ear of durum wheat. The various parameters related to the photosynthetic activity were analysed in relation to the total above-ground plant biomass and grain yield at maturity. Four local varieties plus two cultivars adapted to the semiarid areas of South Morocco were grown in pots in a greenhouse. Five different water treatments were maintained from the beginning of stem elongation to maturity, when shoot biomass and grain yield were recorded. The net photosynthesis (A), stomatal conductance (gs) and transpiration (T) of the ear and the flag leaf were measured at anthesis. In both organs these factors decreased significantly with water deficit, whereas the A/T and A/gs ratios increased. The genotype effect was also significant for all traits studied. Whole-organ photosynthesis was much higher in the ear than in the flag leaf in well-watered conditions. As water stress developed, photosynthesis decreased less in the ear than in the flag leaf. Whole-ear photosynthesis correlated better than flag leaf photosynthesis with biomass and yield. Nevertheless, the relationships of the whole flag leaf with biomass and yield improved as the water stress became more severe, suggesting a progressive shift of yield from sink to source limitation. For all water regimes the ratios A/gs and A/T of the ear also showed a higher (negative) correlation with both biomass and yield than those of the flag leaf. The results indicate that the ear has a greater photosynthetic role than the flag leaf in determining grain yield, not only in drought but also in the absence of stress.
Resumo:
Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH4NO3) and high (HN, 15 mm NH4NO3) N conditions. We conducted simultaneous double labelling (12CO2 and 15NH415NO3) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUEtotal), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post-anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the"waste" of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value.
Resumo:
A comparative survey was done in leafhopper populations captured in apricot orchards in two areas of Valencia, one with considerable natural spread of apricot chlorotic leaf roll (ACLR), and the other where such natural spread is virtually nonexistent. An identification of the leafhopper species found in the first and in the second area suggest that Neoaliturus haematoceps and/or Neoaliturus fertestratus are the potential vectors of ACLR, at least under the conditions of Valencia province. Psammotettix striatus and Austroagallia sinuata are potential secondary vextors of ACLR.
Resumo:
In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.
Resumo:
This study was carried to develop functions that could explain the growth of Oxalis latifolia, in both early stages and throughout the season, contributing to the improvement of its cultural control. Bulbs of the Cornwall form of O. latifolia were buried at 1 and 8 cm in March 1999 and 2000. Samples were destructive at fixed times, and at each time the corresponding BBCH scale codes as well as the absolute number of growing and adult leaves were noted. Using the absolute number of adult leaves (transformed to percentages), a Gaussian curve of three parameters that explains the growth during the season (R2=0.9355) was developed. The BBCH scale permitted the fit of two regression lines that were accurately adjusted for each burial depth (R2=0.9969 and R2=0.9930 respectively for 1 and 8 cm). The best moment for an early defoliation in Northern Spain could be calculated with these regression lines, and was found to be the second week of May. In addition, it was observed that a burial depth of 8 cm does not affect the growing pattern of the weed, but it affects the number of leaves they produce, which decreases to less than a half of those produced at 1 cm.
Resumo:
Background and aims Rhizodeposition plays an important role in mediating soil nutrient availability in ecosystems. However, owing to methodological difficulties (i.e., narrow zone of soil around roots, rapid assimilation by soil microbes) fertility-induced changes in rhizodeposition remain mostly unknown. Methods We developed a novel long-term continuous 13C labelling method to address the effects of two levels of nitrogen (N) fertilization on rhizodeposited carbon (C) by species with different nutrient acquisition strategies. Results Fertility-induced changes in rhizodeposition were modulated by root responses to N availability rather than by changes in soil microbial biomass. Differences among species were mostly related to plant biomass: species with higher total leaf and root biomass also had higher total rhizodeposited C, whereas species with lower root biomass had higher specific rhizodeposited C (per gram root mass). Experimental controls demonstrated that most of the biases commonly associated with this type of experiment (i.e., long-term steady-state labelling) were avoided using our methodological approach. Conclusions These results suggest that the amount of rhizodeposited C from plants grown under different levels of N were driven mainly by plant biomass and root morphology rather than microbial biomass. They also underline the importance of plant characteristics (i.e., biomass allocation) as opposed to traits associated with plant resource acquisition strategies in predicting total C rhizodeposition.
Resumo:
Intensive swine production is an important agricultural and economical activity in Europe. The high availability of pig slurry (PS) lead to attractive fertilization strategy to reduce costs, therefore is mainly applied as fertilizer in agricultural systems. The optimization N fertilization in these areas should be taken in into to avoid nitrates losses by lixiviation and to achieve maximum efficiency in crop nutrition. Many studies have shown that PS applications can achieve satisfactory yields in different crops by partially or completely replacing synthetic fertilizers. In addition, for the last years, in Northeast Spain (Catalonia) has been widely extended the double-cropping forage system.