6 resultados para instanton
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Several SL(3,C) self-dual instanton solutions of the Yang-Mills equations are presented which have very striking properties. While one of them is regular and SU(3) inside (outside) a sphere of arbitrarily large (small) radius, another one has all the characteristics of a meron solution (in particular its topological charge is concentrated at one point) although its Pontryagin number equals one. Their continuation to Minkowski space is also studied.
Resumo:
Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, taking into account one loop prefactors. In particular, we consider the creation of membranes by an antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also considered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter backgrounds. We find the contribution of such instantons to the semiclassical partition function, including the one loop corrections due to small fluctuations around the spherical world sheet. We suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated during inflation. This can be seen as an extension of the usual formula, valid in flat space, according to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair production, the results reproduce those that can be obtained using second quantization methods, confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the gravitational field and the antisymmetric tensor field are assumed external.
Resumo:
We use the method of Bogolubov transformations to compute the rate of pair production by an electric field in (1+1)-dimensional de Sitter space. The results are in agreement with those obtained previously using the instanton methods. This is true even when the size of the instanton is comparable to the size of the de Sitter horizon.
Resumo:
The singularity in the Hawking-Turok model of open inflation has some appealing properties, such as the fact that its action is integrable. Also, if one thinks of the singularity as the boundary of spacetime, then the Gibbons-Hawking term is nonvanishing and finite. Here, we consider a model where the gravitational and scalar fields are coupled to a dynamical membrane. The singular instanton can then be obtained as the limit of a family of no-boundary solutions where both the geometry and the scalar field are regular. Using this procedure, the contribution of the singularity to the Euclidean action is just 1/3 of the Gibbons-Hawking term. Unrelated to this issue, we also point out that the singularity acts as a reflecting boundary for scalar perturbations and gravity waves. Therefore, the quantization of cosmological perturbations seems to be well posed in this background.
Resumo:
region to the other. We also present a C-type solution that describes neutral bubbles in uniform acceleration, and we use it to construct an instanton that mediates the breaking of a cosmic string by forming bubbles at its ends. The rate for this process is also calculated. Finally, we argue that a similar solution can be constructed for magnetic bubbles, and that it can be used to describe a semiclassical instability of the two-timing vacuum against production of massless monopole pairs.
Resumo:
"static" instanton, representing pair creation of critical bubbles¿a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such a static instanton may be well suited for the ¿saltatory¿ relaxation scenario proposed by Feng et al.