14 resultados para high harmonics generation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Given the urgence of a new paradigm in wireless digital trasmission which should allow for higher bit rate, lower latency and tigher delay constaints, it has been proposed to investigate the fundamental building blocks that at the circuital/device level, will boost the change towards a more efficient network architecture, with high capacity, higher bandwidth and a more satisfactory end user experience. At the core of each transciever, there are inherently analog devices capable of providing the carrier signal, the oscillators. It is strongly believed that many limitations in today's communication protocols, could be relieved by permitting high carrier frequency radio transmission, and having some degree of reconfigurability. This led us to studying distributed oscillator architectures which work in the microwave range and possess wideband tuning capability. As microvave oscillators are essentially nonlinear devices, a full nonlinear analyis, synthesis, and optimization had to be considered for their implementation. Consequently, all the most used nonlinear numerical techniques in commercial EDA software had been reviewed. An application of all the aforementioned techniques has been shown, considering a systems of three coupled oscillator ("triple push" oscillator) in which the stability of the various oscillating modes has been studied. Provided that a certain phase distribution is maintained among the oscillating elements, this topology permits a rise in the output power of the third harmonic; nevertheless due to circuit simmetry, "unwanted" oscillating modes coexist with the intenteded one. Starting with the necessary background on distributed amplification and distributed oscillator theory, the design of a four stage reverse mode distributed voltage controlled oscillator (DVCO) using lumped elments has been presented. All the design steps have been reported and for the first time a method for an optimized design with reduced variations in the output power has been presented. Ongoing work is devoted to model a wideband DVCO and to implement a frequency divider.
Resumo:
L’estudi examina les relacions entre (1) les xarxes socials personals de la població immigrant resident a Barcelona i (2) les seves identitats culturals múltiples. L’objectiu principal de l’estudi és entendre com el contingut i l’estructura de les relacions socials dels immigrants facilita o dificulta (1) tenir un sentiment de pertinença a les noves cultures d’acollida, la catalana i la espanyola, i (2) la integració d’aquestes noves identitats socioculturals amb la seva identitat d’origen en una nova identitat bicultural cohesiva. El nostre plantejament inicial era que els immigrants amb xarxes socials més diverses des del punt de vista de la seva composició cultural tindrien més recursos socials i experiències cognitives més diverses , factors que afavoreixen les identificacions múltiples i la participació cívica. Els resultats de l’estudi mostren que el grau d’identificació dels participants amb la seva cultura ètnica o d’origen és força alt i, en certa mesura, més alt en comparació amb les cultures d’acollida ( catalana, cívica i espanyola). Tanmateix, el vincle dels participants amb les cultures d’acollida (p. ex., la cultura catalana) és prou rellevant per a indicar una orientació bicultural (catalana i ètnica). Les anàlisis de correlacions revelen que sentir-se català no impedeix sentir-se part de la comunitat etnocultural d’origen. A més, existeix una interrelació entre l'orientació cultural catalana i la identificació amb les comunitats cíviques locals. De la mateixa manera, tenir competències en llengua catalana no va en detriment de les competències en llengua castellana. Les anàlisis també mostren que factors com l’orientació cultural catalana, l’ús del català i la identificació amb la cultura catalana tenen una correlació positiva amb el grau de chohesio de la indentitat bicultural, afavoreixen el benestar psicològic i disminueixen l’estrès aculturatiu. L’anàlisi de les xarxes socials mostra que la identificació amb la cultura catalana, l’orientació cultural catalana i la integració de la identitat són factors clau per tenir xarxes socials més diverses des del punt de vista ètnic i lingüístic, amb menys membres del col•lectiu d’origen, i amb subgrups o “cliques” culturalment més heterogenis. La identificació espanyola també prediu, en mesura més reduïda, la diversitat de les xarxes. Els nostres resultats contribueixen a la recerca actual i les teories sobre interculturalitat i identitat cultural.
Resumo:
Given the current economic environment, high-growth companies are particularly relevant for their contribution to employment generation and wealth.This paper discusses the results of a survey that was conducted in order to gain a deeper understanding of high-growth cooperatives through analyzing their financial profiles and then identifying key contributing factors to their growth. To do this, we compared this particular sample with other cooperatives and other high-growth mercantile companies.The results show the main drivers related to high-growth companies success. They are the competitive advantages based on the surveyed group, modern management techniques, quality and productivity, innovation and internationalization. Additionally, we have observed some financial strengths and weaknesses. In this sense, they are under capitalized companies with an unbalanced growth.
Resumo:
Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.
Resumo:
Although paraphrasing is the linguistic mechanism underlying many plagiarism cases, little attention has been paid to its analysis in the framework of automatic plagiarism detection. Therefore, state-of-the-art plagiarism detectors find it difficult to detect cases of paraphrase plagiarism. In this article, we analyse the relationship between paraphrasing and plagiarism, paying special attention to which paraphrase phenomena underlie acts of plagiarism and which of them are detected by plagiarism detection systems. With this aim in mind, we created the P4P corpus, a new resource which uses a paraphrase typology to annotate a subset of the PAN-PC-10 corpus for automatic plagiarism detection. The results of the Second International Competition on Plagiarism Detection were analysed in the light of this annotation. The presented experiments show that (i) more complex paraphrase phenomena and a high density of paraphrase mechanisms make plagiarism detection more difficult, (ii) lexical substitutions are the paraphrase mechanisms used the most when plagiarising, and (iii) paraphrase mechanisms tend to shorten the plagiarized text. For the first time, the paraphrase mechanisms behind plagiarism have been analysed, providing critical insights for the improvement of automatic plagiarism detection systems.
Resumo:
ZnO nanorods grown by both high temperature vapour phase transport and low temperature chemical bath deposition are very promising sources for UV third harmonic generation. Material grown by both methods show comparable efficiencies, in both cases an order of magnitude higher than surface third harmonic generation at the quartz-air interface of a bare quartz substrate. This result is in stark contrast to the linear optical properties of ZnO nanorods grown by these two methods, which show vastly different PL efficiencies. The third harmonic generated signal is analysed using intensity dependent measurements and interferometric frequency resolved optical gating, allowing extraction of the laser pulse parameters. The comparable levels of efficiency of ZnO grown by these very different methods as sources for third harmonic UV generation provides a broad suite of possible growth methods to suit various substrates, coverage and scalability requirements. Potential application areas range from interferometric frequency resolved optical gating characterization of few cycle fs pulses to single cell UV irradiation for biophysical studies.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.