5 resultados para gene signature
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Emergent molecular measurement methods, such as DNA microarray, qRTPCR, andmany others, offer tremendous promise for the personalized treatment of cancer. Thesetechnologies measure the amount of specific proteins, RNA, DNA or other moleculartargets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumorspecimens are heterogeneous; an individual specimen typically contains unknownamounts of multiple tissues types. Thus, the measured molecular concentrations resultfrom an unknown mixture of tissue types, and must be normalized to account for thecomposition of the mixture.For example, a breast tumor biopsy may contain normal, dysplastic and cancerousepithelial cells, as well as stromal components (fatty and connective tissue) and bloodand lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic andcancerous epithelial cells. The remaining tissue components serve to “contaminate”the signal of interest. The proportion of each of the tissue components changes asa function of patient characteristics (e.g., age), and varies spatially across the tumorregion. Because each of the tissue components produces a different molecular signature,and the amount of each tissue type is specimen dependent, we must estimate the tissuecomposition of the specimen, and adjust the molecular signal for this composition.Using the idea of a chemical mass balance, we consider the total measured concentrationsto be a weighted sum of the individual tissue signatures, where weightsare determined by the relative amounts of the different tissue types. We develop acompositional source apportionment model to estimate the relative amounts of tissuecomponents in a tumor specimen. We then use these estimates to infer the tissuespecificconcentrations of key molecular targets for sub-typing individual tumors. Weanticipate these specific measurements will greatly improve our ability to discriminatebetween different classes of tumors, and allow more precise matching of each patient tothe appropriate treatment
Resumo:
Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
Resumo:
The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.
Resumo:
Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy available in advanced stages. Nuclear corepressor (NCoR) is an essential regulator of gene transcription, and its function has been found deregulated in different types of cancer. In colorectal cancer cells, loss of nuclear NCoR is induced by Inhibitor of kappa B kinase (IKK) through the phosphorylation of specific serine residues. We here investigate whether NCoR function impacts in MM, which might have important diagnostic and prognostic significance. By IHC, we here determined the subcellular distribution of NCoR in a cohort of 63 primary invasive MM samples, and analyzed its possible correlation with specific clinical parameters. We therefore used a microarray-based strategy to determine global gene expression differences in samples with similar tumor stage, which differ in the presence of cytoplasmic or nuclear NCoR. We found that loss of nuclear NCoR results in upregulation of a specific cancer-related genetic signature, and is significantly associated with MM progression. Inhibition of IKK activity in melanoma cells reverts NCoR nuclear distribution and specific NCoR-regulated gene transcription. Analysis of public database demonstrated that inactivating NCoR mutations are highly prevalent in MM, showing features of driver oncogene.
Resumo:
Performance prediction and application behavior modeling have been the subject of exten- sive research that aim to estimate applications performance with an acceptable precision. A novel approach to predict the performance of parallel applications is based in the con- cept of Parallel Application Signatures that consists in extract an application most relevant parts (phases) and the number of times they repeat (weights). Executing these phases in a target machine and multiplying its exeuction time by its weight an estimation of the application total execution time can be made. One of the problems is that the performance of an application depends on the program workload. Every type of workload affects differently how an application performs in a given system and so affects the signature execution time. Since the workloads used in most scientific parallel applications have dimensions and data ranges well known and the behavior of these applications are mostly deterministic, a model of how the programs workload affect its performance can be obtained. We create a new methodology to model how a program’s workload affect the parallel application signature. Using regression analysis we are able to generalize each phase time execution and weight function to predict an application performance in a target system for any type of workload within predefined range. We validate our methodology using a synthetic program, benchmarks applications and well known real scientific applications.