14 resultados para garch
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The goal of this paper is to estimate time-varying covariance matrices.Since the covariance matrix of financial returns is known to changethrough time and is an essential ingredient in risk measurement, portfolioselection, and tests of asset pricing models, this is a very importantproblem in practice. Our model of choice is the Diagonal-Vech version ofthe Multivariate GARCH(1,1) model. The problem is that the estimation ofthe general Diagonal-Vech model model is numerically infeasible indimensions higher than 5. The common approach is to estimate more restrictive models which are tractable but may not conform to the data. Our contributionis to propose an alternative estimation method that is numerically feasible,produces positive semi-definite conditional covariance matrices, and doesnot impose unrealistic a priori restrictions. We provide an empiricalapplication in the context of international stock markets, comparing thenew estimator to a number of existing ones.
Resumo:
This paper evaluates the forecasting performance of a continuous stochastic volatility model with two factors of volatility (SV2F) and compares it to those of GARCH and ARFIMA models. The empirical results show that the volatility forecasting ability of the SV2F model is better than that of the GARCH and ARFIMA models, especially when volatility seems to change pattern. We use ex-post volatility as a proxy of the realized volatility obtained from intraday data and the forecasts from the SV2F are calculated using the reprojection technique proposed by Gallant and Tauchen (1998).
Resumo:
Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.
Resumo:
One of the main implications of the efficient market hypothesis (EMH) is that expected future returns on financial assets are not predictable if investors are risk neutral. In this paper we argue that financial time series offer more information than that this hypothesis seems to supply. In particular we postulate that runs of very large returns can be predictable for small time periods. In order to prove this we propose a TAR(3,1)-GARCH(1,1) model that is able to describe two different types of extreme events: a first type generated by large uncertainty regimes where runs of extremes are not predictable and a second type where extremes come from isolated dread/joy events. This model is new in the literature in nonlinear processes. Its novelty resides on two features of the model that make it different from previous TAR methodologies. The regimes are motivated by the occurrence of extreme values and the threshold variable is defined by the shock affecting the process in the preceding period. In this way this model is able to uncover dependence and clustering of extremes in high as well as in low volatility periods. This model is tested with data from General Motors stocks prices corresponding to two crises that had a substantial impact in financial markets worldwide; the Black Monday of October 1987 and September 11th, 2001. By analyzing the periods around these crises we find evidence of statistical significance of our model and thereby of predictability of extremes for September 11th but not for Black Monday. These findings support the hypotheses of a big negative event producing runs of negative returns in the first case, and of the burst of a worldwide stock market bubble in the second example. JEL classification: C12; C15; C22; C51 Keywords and Phrases: asymmetries, crises, extreme values, hypothesis testing, leverage effect, nonlinearities, threshold models
Resumo:
This paper provides evidence on the sources of co-movement in monthly US and UK stock price movements by investigating the role of macroeconomic and financial variables in a bivariate system with time-varying conditional correlations. Crosscountry communality in response is uncovered, with changes in the US Federal Funds rate, UK bond yields and oil prices having similar negative effects in both markets. Other variables also play a role, especially for the UK market. These effects do not, however, explain the marked increase in cross-market correlations observed from around 2000, which we attribute to time variation in the correlations of shocks to these markets. A regime-switching smooth transition model captures this time variation well and shows the correlations increase dramatically around 1999-2000. JEL classifications: C32, C51, G15 Keywords: international stock returns, DCC-GARCH model, smooth transition conditional correlation GARCH model, model evaluation.
Resumo:
This paper measures the degree in stock market integration between five Eastern European countries and the Euro-zone. A potentially gradual transition in correlations is accommodated by smooth transition conditional correlation models. We find that the correlation between stock markets has increased from 2001 to 2007. In particular, the Czech and Polish markets show a higher correlation to the Euro-zone. However, this is not a broad-based phenomenon across Eastern Europe. We also find that the increase in correlations is not a reflection of a world-wide phenomenon of financial integration but appears to be specific to the European market. JEL classifications: C32; C51; F36; G15 Keywords: Multivariate GARCH; Smooth Transition Conditional Correlation; Stock Return Comovement; New EU Members.
Resumo:
The advent of the European Union has decreased the diversification benefits available from country based equity market indices in the region. This paper measures the increase in stock integration between the three largest new EU members (Hungary, the Czech Republic and Poland who joined in May 2004) and the Euro-zone. A potentially gradual transition in correlations is accommodated in a single VAR model by embedding smooth transition conditional correlation models with fat tails, spillovers, volatility clustering, and asymmetric volatility effects. At the country market index level all three Eastern European markets show a considerable increase in correlations in 2006. At the industry level the dates and transition periods for the correlations differ, and the correlations are lower although also increasing. The results show that sectoral indices in Eastern European markets may provide larger diversification opportunities than the aggregate market. JEL classifications: C32; C51; F36; G15 Keywords: Multivariate GARCH; Smooth Transition Conditional Correlation; Stock Return Comovement; Sectoral correlations; New EU Members
Resumo:
This paper has three objectives. First, it aims at revealing the logic of interest rate setting pursued by monetary authorities of 12 new EU members. Using estimation of an augmented Taylor rule, we find that this setting was not always consistent with the official monetary policy. Second, we seek to shed light on the inflation process of these countries. To this end, we carry out an estimation of an open economy Philips curve (PC). Our main finding is that inflation rates were not only driven by backward persistency but also held a forward-looking component. Finally, we assess the viability of existing monetary arrangements for price stability. The analysis of the conditional inflation variance obtained from GARCH estimation of PC is used for this purpose. We conclude that inflation targeting is preferable to an exchange rate peg because it allowed decreasing the inflation rate and anchored its volatility.
Resumo:
We establish the validity of subsampling confidence intervals for themean of a dependent series with heavy-tailed marginal distributions.Using point process theory, we study both linear and nonlinear GARCH-liketime series models. We propose a data-dependent method for the optimalblock size selection and investigate its performance by means of asimulation study.
Resumo:
Among the underlying assumptions of the Black-Scholes option pricingmodel, those of a fixed volatility of the underlying asset and of aconstantshort-term riskless interest rate, cause the largest empirical biases. Onlyrecently has attention been paid to the simultaneous effects of thestochasticnature of both variables on the pricing of options. This paper has tried toestimate the effects of a stochastic volatility and a stochastic interestrate inthe Spanish option market. A discrete approach was used. Symmetricand asymmetricGARCH models were tried. The presence of in-the-mean and seasonalityeffectswas allowed. The stochastic processes of the MIBOR90, a Spanishshort-terminterest rate, from March 19, 1990 to May 31, 1994 and of the volatilityofthe returns of the most important Spanish stock index (IBEX-35) fromOctober1, 1987 to January 20, 1994, were estimated. These estimators wereused onpricing Call options on the stock index, from November 30, 1993 to May30, 1994.Hull-White and Amin-Ng pricing formulas were used. These prices werecomparedwith actual prices and with those derived from the Black-Scholesformula,trying to detect the biases reported previously in the literature. Whereasthe conditional variance of the MIBOR90 interest rate seemed to be freeofARCH effects, an asymmetric GARCH with in-the-mean and seasonalityeffectsand some evidence of persistence in variance (IEGARCH(1,2)-M-S) wasfoundto be the model that best represent the behavior of the stochasticvolatilityof the IBEX-35 stock returns. All the biases reported previously in theliterature were found. All the formulas overpriced the options inNear-the-Moneycase and underpriced the options otherwise. Furthermore, in most optiontrading, Black-Scholes overpriced the options and, because of thetime-to-maturityeffect, implied volatility computed from the Black-Scholes formula,underestimatedthe actual volatility.
Resumo:
We propose a new family of density functions that possess both flexibilityand closed form expressions for moments and anti-derivatives, makingthem particularly appealing for applications. We illustrate its usefulnessby applying our new family to obtain density forecasts of U.S. inflation.Our methods generate forecasts that improve on standard methods based on AR-ARCH models relying on normal or Student's t-distributional assumptions.
Resumo:
Con este trabajo revisamos los Modelos de niveles de las tasas de intereses en Chile. Además de los Modelos de Nivel tradicionales por Chan, Karoly, Longstaff y Lijadoras (1992) en EE. UU, y Parisi (1998) en Chile, por el método de Probabilidad Maximun permitimos que la volatilidad condicional también incluya los procesos inesperados de la información (el modelo GARCH ) y también que la volatilidad sea la función del nivel de la tasa de intereses (modelo TVP-NIVELE) como en Brenner, Harjes y la Crona (1996). Para esto usamos producciones de mercado de bonos de reconocimiento, en cambio las producciones mensuales medias de subasta PDBC, y la ampliación del tamaño y la frecuencia de la muestra a 4 producciones semanales con términos(condiciones) diferentes a la madurez: 1 año, 5 años, 10 años y 15 años. Los resultados principales del estudio pueden ser resumidos en esto: la volatilidad de los cambios inesperados de las tarifas depende positivamente del nivel de las tarifas, sobre todo en el modelo de TVP-NIVEL. Obtenemos pruebas de reversión tacañas, tal que los incrementos en las tasas de intereses no eran independientes, contrariamente a lo obtenido por Brenner. en EE. UU. Los modelos de NIVELES no son capaces de ajustar apropiadamente la volatilidad en comparación con un modelo GARCH (1,1), y finalmente, el modelo de TVP-NIVEL no vence los resultados del modelo GARCH (1,1)
Resumo:
Con este trabajo revisamos los Modelos de niveles de las tasas de intereses en Chile. Además de los Modelos de Nivel tradicionales por Chan, Karoly, Longstaff y Lijadoras (1992) en EE. UU, y Parisi (1998) en Chile, por el método de Probabilidad Maximun permitimos que la volatilidad condicional también incluya los procesos inesperados de la información (el modelo GARCH ) y también que la volatilidad sea la función del nivel de la tasa de intereses (modelo TVP-NIVELE) como en Brenner, Harjes y la Crona (1996). Para esto usamos producciones de mercado de bonos de reconocimiento, en cambio las producciones mensuales medias de subasta PDBC, y la ampliación del tamaño y la frecuencia de la muestra a 4 producciones semanales con términos(condiciones) diferentes a la madurez: 1 año, 5 años, 10 años y 15 años. Los resultados principales del estudio pueden ser resumidos en esto: la volatilidad de los cambios inesperados de las tarifas depende positivamente del nivel de las tarifas, sobre todo en el modelo de TVP-NIVEL. Obtenemos pruebas de reversión tacañas, tal que los incrementos en las tasas de intereses no eran independientes, contrariamente a lo obtenido por Brenner. en EE. UU. Los modelos de NIVELES no son capaces de ajustar apropiadamente la volatilidad en comparación con un modelo GARCH (1,1), y finalmente, el modelo de TVP-NIVEL no vence los resultados del modelo GARCH (1,1)
Resumo:
En este trabajo examinamos si la teoría de expectativas con primas de liquidez constantes puede explicar la estructura temporal de los tipos de interés de pequeños vencimientos en el mercado interbancario de depósitos español, para datos mensuales desde 1977 hasta 1995. Utilizamos el contraste de Campbell y Shiller (1987) basado en un modelo VAR cointegrado. A partir de las estimaciones consistentes de dicho modelo obtenemos la magnitud y persistencia de los shocks a través de la simulación de la respuesta al impulso, y estimaciones eficientes de los parámetros modelizando la varianza condicional que es variable en el tiempo. En este sentido, se proponen varios esquemas de volatilidad que permiten plantear distintas aproximaciones de laincertidumbre en un entorno multiecuacional GARCH y que están basadas en el modelo de expectativas propuesto. La evidencia empírica muestra que se incumple la teoría de las expectativas, que existe una dinámica conjunta a corto plazo para los tipos de interés y el diferencial que está definida por un modelo VAR(4)-GARCH( 1,1)-BEKK (que está próximo a la integrabilidad en varianza), y que existen distintos factores de riesgo que afectan a las primas en los plazos estudiados