5 resultados para foliar ontogeny
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Els anys 2008 i 2009 es va dur a terme un assaig en una plantació de pomera cv. Golden Smoothee® per a avaluar l’efecte de la poda mecànica del dosser foliar i la poda mecànica d’arrels sobre el rendiment de l’arbre, el pes promig del fruit i la qualitat del fruit. Els resultats confirmen que la poda mecànica del dosser foliar no redueix el rendiment de fruits de qualitat comercial i tampoc afecta la qualitat dels fruits; la poda d’arrels quan es duu a terme durant l’hivern tampoc suposa cap reducció de rendiment ni de qualitat dels fruits de pomera.
Resumo:
El present treball, pretén presentar una nova metodologia per a l'estimació de la superfície foliar en vinya mitjançant l'ús d'un sensor làser terrestre (LIDAR). Per a fer això, prèviament va tindre lloc una recollida de dades del camp en una parcel·la de vinya a Raïmat. Posteriorment, en gabinet es va realitzar un anàlisi de les dades per tal d'estimar a partir de diferents paràmetres, la superfície foliar existent en cadascún dels trams on van tindre lloc les mesures. Finalment, un cop obtinguts els resultats a partir del sensor terrestre, es van comparar amb els proporcionats per un sensor remot.
Resumo:
Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 C) or freezing temperatures (< 0 C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc,max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc,max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibitionavoiding (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies. However, they seemed equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.
Resumo:
Climate change has been taking place at unprecedented rates over the past decades. These fast alterations caused by human activities are leading to a global warming of the planet. Warmer temperatures are going to have important effects on vegetation and especially on tropical forests. Insects as well will be affected by climate change. This study tested the hypothesis that higher temperatures lead to a higher insect pressure on vegetation. Visual estimations of leaf damage were recorded and used to assess the extent of herbivory in nine 0.1ha plots along an altitudinal gradient, and therefore a temperature gradient. These estimations were made at both a community level and a species level, on 2 target species. Leaf toughness tests were performed on samples from the target species from each plot. Results showed a strong evidence of increasing insect damage along increasing temperature, with no significant effect from the leaf toughness.
Resumo:
Ontogenetic changes in digestive capabilities were analyzed in larvae and first juveniles of the spider crab Maja brachydactyla. Activities of five proteinases (total proteases, trypsin, chymotrypsin, pepsin-like and aminopeptidase), three carbohydrases (amylase, maltase and chitinase), an esterase and an alkaline phosphatase were studied to evaluate digestive enzyme profiles of the species. Both quantitative (spectrophotometry and fluorometry) and qualitative (SDS-PAGE) approaches were used. All assayed enzymes were active from hatching (zoea I-ZI) throughout larval development and in first juveniles. Significant variations during ontogeny were found only in total activities likely as a consequence of digestive system development. Specific activity varied little over ontogeny, being significant only for chitinase. Total proteases, trypsin and pepsin-like activities showed a similar pattern of increase as larval ontogeny advanced, decreasing significantly in juveniles. Chymotrypsin continued to increase, showing maximum activity after metamorphosis. Proteinase zymograms confirmed strong proteolytic activity in first zoeas, with increasing bands over the course of ontogeny, decreasing after metamorphosis. A group of bands with high molecular mass was specific to larval stages. Amylase and maltase showed a parallel pattern of continuous increase of total activity as development advanced. Gel-SDS-PAGE showed unchanged patterns of amylase activity in first zoeas of different ages and the most complex set of bands during larval ontogeny in second zoea. Esterase total activity increased significantly as ZI's aged likely reflecting introduction of a lipid-enriched diet. The importance of lipid accumulation at the beginning of ontogeny was also confirmed by the protease/esterase and amylase/esterase activity ratios, which decreased from hatch to late ZI and might be explained as an adaptation, ensuring the next molt. The results suggest that larvae of M. brachydactyla are capable of digesting a variety of dietary substrates as soon as they hatch.