49 resultados para fluctuating valence
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
La Conférence inaugurale de Barcelone a marqué, en novembre 1995, le début d'un long processus de rapprochement et de solidarité entre 27 partenaires (35 pays depuis le 1er mai 2004 et 37 à moyen terme). Cette initiative est censée revêtir un caractère permanent et évolutif sous l'angle institutionnel. De par sa dimension stratégique, le Processus de Barcelone, ci-après Processus, constitue l'instrument le plus important et le plus concret pour le dialogue et la coopération entre l'Union européenne (UE), ses Etats membres et les partenaires méditerranéens2. Pour être efficace, et pas uniquement rhétorique ou virtuel, le Partenariat euro-méditerranéen, ci-après Partenariat, doit se bâtir sur des valeurs universelles, capables de garantir un minimum de cohérence et de crédibilité à un projet extrêmement complexe, fragile et, par sa propre nature, constamment menacé de paralysie. En effet, il n'est pas toujours aisé de faire prévaloir des actions à caractère centripète aux tentations et tendances centrifuges qui caractérisent la région. Les changements et les événements exceptionnels survenus récemment, tant dans le domaine international qu'au sein de l'Union, ont rendu nécessaires l'approfondissement et le renforcement institutionnel des relations euro-méditerranéennes. Le Processus est appelé à se consolider d'urgence, pour être compris et accepté par une opinion publique de plus en plus sceptique et déconcertée par l'actualité internationale. La récente création de l'Assemblée parlementaire euro-méditerranéenne (APEM) - qui sera dotée de trois commissions permanentes3 - et la constitution prochaine à Alexandrie de la Fondation Euromed pour le dialogue entre les cultures et les civilisations, représentent des réponses logiques et encourageantes à cet état d'esprit plus ou moins généralisé
Resumo:
The changes undergone by the Si surface after oxygen bombardment have special interest for acquiring a good understanding of the Si+-ion emission during secondary ion mass spectrometry (SIMS) analysis. For this reason a detailed investigation on the stoichiometry of the builtup surface oxides has been carried out using in situ x-ray photoemission spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates a strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30°. In this work a special emphasis on the analysis and interpretation of the valence band region was made. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the respective valence band structures also differ. A comparison with experimentally measured and theoretically derived Si valence band and SiO2 valence band suggests that the new valence bands are formed by a combination of these two. This arises from the fact that Si¿Si bonds are present on the Si¿suboxide molecules, and therefore the corresponding 3p-3p Si-like subband, which extends towards the Si Fermi level, forms the top of the respective new valence bands. Small variations in intensity and energy position for this subband have drastic implications on the intensity of the Si+-ion emission during sputtering in SIMS measurements. A model combining chemically enhanced emission and resonant tunneling effects is suggested for the variations observed in ion emission during O+2 bombardment for Si targets.
Resumo:
The short-range resonating-valence-bond (RVB) wave function with nearest-neighbor (NN) spin pairings only is investigated as a possible description for the Heisenberg model on a square-planar lattice. A type of long-range order associated to this RVB Ansatz is identified along with some qualitative consequences involving lattice distortions, excitations, and their coupling.
Resumo:
Distortions of polyacene polymers are studied within a many-body valence-bond framework using a powerful transfer-matrix technique for the valence-bond (or Heisenberg) model of the system. The computations suggest that the ground-state geometry is either totally symmetric or possibly exhibits a slight (A2 or B2 symmetry) bond-alternation distortion. The lowest-energy (nonsymmetric, in-plane) distortions are the A2 and B2 modes, which, within our approximations, are degenerate.
Resumo:
Fréedericksz transition under twist deformation in a nematic layer is discussed when the magnetic field has a random component. A dynamical model which includes the thermal fluctuations of the system is presented. The randomness of the field produces a shift of the instability point. Beyond this instability point the time constant characteristic of the approach to the stationary stable state decreases because of the field fluctuations. The opposite happens for fields smaller than the critical one. The decay time of an unstable state, calculated as a mean first-passage time, is also decreased by the field fluctuations.
Resumo:
A linear M-O-M (M=metal, O=oxygen) cluster embedded in a Madelung field, and also including the quantum effects of the neighboring ions, is used to represent the alkaline-earth oxides. For this model an ab initio wave function is constructed as a linear combination of Slater determinants written in an atomic orbital basis set, i.e., a valence-bond wave function. Each valence-bond determinant (or group of determinants) corresponds to a resonating valence-bond structure. We have obtained ab initio valence-bond cluster-model wave functions for the electronic ground state and the excited states involved in the optical-gap transitions. Numerical results are reasonably close to the experimental values. Moreover, the model contains the ionic model as a limiting case and can be readily extended and improved.
Resumo:
High resolution x-ray photoelectron spectroscopy has been used to determine the valence band alignment at ultrathin SiO2/Si interfaces. In the oxide thickness range 1.6-4.4 nm the constant band-offset values of 4.49 and 4.43 eV have been obtained for the dry SiO2/Si(100) and the wet SiO2/Si(100) interfaces, respectively. The valence band alignment of dry SiO2/Si(111) (4.36 eV) is slightly smaller than the case of the dry SiO2/Si(100) interface.
Resumo:
The acquisition of reward and the avoidance of punishment could logically be contingent on either emitting or withholding particular actions. However,the separate pathways inthe striatumfor go and no-go appearto violatethis independence, instead coupling affect and effect. Respect for this interdependence has biased many studies of reward and punishment, so potential action- outcome valence interactions during anticipatory phases remain unexplored. In a functional magnetic resonance imaging study with healthy human volunteers, we manipulated subjects" requirement to emit or withhold an action independent from subsequent receipt of reward or avoidance of punishment. During anticipation, in the striatum and a lateral region within the substantia nigra/ventral tegmental area (SN/VTA), action representations dominated over valence representations. Moreover, we did not observe any representation associated with different state values through accumulation of outcomes, challenging a conventional and dominant association between these areas and state value representations. In contrast, a more medial sector of the SN/VTA responded preferentially to valence, with opposite signs depending on whether action was anticipatedto be emitted or withheld. This dominant influence of action requires an enriched notion of opponency between reward and punishment.
Resumo:
Molecular dynamics simulations were performed to study the ion and water distribution around a spherical charged nanoparticle. A soft nanoparticle model was designed using a set of hydrophobic interaction sites distributed in six concentric spherical layers. In order to simulate the effect of charged functionalyzed groups on the nanoparticle surface, a set of charged sites were distributed in the outer layer. Four charged nanoparticle models, from a surface charge value of −0.035 Cm−2 to − 0.28 Cm−2, were studied in NaCl and CaCl2 salt solutions at 1 M and 0.1 M concentrations to evaluate the effect of the surface charge, counterion valence, and concentration of added salt. We obtain that Na + and Ca2 + ions enter inside the soft nanoparticle. Monovalent ions are more accumulated inside the nanoparticle surface, whereas divalent ions are more accumulated just in the plane of the nanoparticle surface sites. The increasing of the the salt concentration has little effect on the internalization of counterions, but significantly reduces the number of water molecules that enter inside the nanoparticle. The manner of distributing the surface charge in the nanoparticle (uniformly over all surface sites or discretely over a limited set of randomly selected sites) considerably affects the distribution of counterions in the proximities of the nanoparticle surface.
Resumo:
Background: Several studies have reported alterations in finger and a-b ridge counts, and theirderived measures of asymmetry, in schizophrenia compared to controls. Because ridges are fully formed by the end of the second trimester, they may provide clues to disturbed early development. The aim of this study was to assess these measures in a sample of patients with psychosis and normal controls.Methods: Individuals with psychosis (n = 240), and normal controls (n = 228) were drawn from a catchment-area case-control study. Differences in finger and a-b ridge count and Fluctuating Asymmetry were assessed in three group comparisons (non-affective psychosis versus controls; affective psychosis versus controls; non-affective psychosis versus affective psychosis). The analyses were performed separately for males and females. Results: There were no significant group differences for finger nor a-b ridge counts. While there were no group difference for Directional Asymmetry, for Fluctuating Asymmetry measures men with non-affective psychosis had significantly higher fluctuating asymmetry of the index finger ridge count (a) when compared to controls (FA-correlation score, p = 0.02), and (b) when compared to affective psychosis (adjusted FA-difference score, p = 0.04). Conclusion: Overall, measures of finger and a-b ridge counts, and their derived measures of directional and fluctuating asymmetry were not prominent features of psychosis in this sample. While directional asymmetry in cerebral morphology is reduced in schizophrenia, this is not reflected in dermatoglyphic variables.
Resumo:
Report for the scientific sojourn at the Stanford University from January until June 2007. Music is well known for affecting human emotional states, yet the relationship between specific musical parameters and emotional responses is still not clear. With the advent of new human-computer interaction (HCI) technologies, it is now possible to derive emotion-related information from physiological data and use it as an input to interactive music systems. Providing such implicit musical HCI will be highly relevant for a number of applications including music therapy, diagnosis, nteractive gaming, and physiologically-based musical instruments. A key question in such physiology-based compositions is how sound synthesis parameters can be mapped to emotional states of valence and arousal. We used both verbal and heart rate responses to evaluate the affective power of five musical parameters. Our results show that a significant correlation exists between heart rate and the subjective evaluation of well-defined musical parameters. Brightness and loudness showed to be arousing parameters on subjective scale while harmonicity and even partial attenuation factor resulted in heart rate changes typically associated to valence. This demonstrates that a rational approach to designing emotion-driven music systems for our public installations and music therapy applications is possible.
Resumo:
Three conjugated organic molecules that span a range of polarity and valence-bond/charge transfer characteristics were studied. It was found that dispersion can be insignificant, and that adequate treatment can be achieved with frequency-dependent field-induced vibrational coordinates (FD-FICs)
Resumo:
A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes