73 resultados para first-order actions

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

En aquest treball s'analitza la contribució estèrica de les molècules a les seves propietats químiques i físiques, mitjançant l'avaluació del seu volum i de la seva mesura de semblança, a partir d'ara definits com a descriptors moleculars de primer ordre. La difeèsncia entre aquests dos conceptes ha estat aclarida: mentre que el volum és la magnitud de l'espai que ocupa la molècula com a entitat global, la mesura de semblança ens dóna una idea de com està distribuïda la densitat electrònica al llarg d'aquest volum, i reflecteix més les diferències locals existents. L'ús de diverses aproximacions per a l'obtenció d'ambdós valors ha estat analitzat sobre diferents classes d'isòmers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest projecte es centra principalment en el detector no coherent d’un GPS. Per tal de caracteritzar el procés de detecció d’un receptor, es necessita conèixer l’estadística implicada. Pel cas dels detectors no coherents convencionals, l’estadística de segon ordre intervé plenament. Les prestacions que ens dóna l’estadística de segon ordre, plasmada en la ROC, són prou bons tot i que en diferents situacions poden no ser els millors. Aquest projecte intenta reproduir el procés de detecció mitjançant l’estadística de primer ordre com a alternativa a la ja coneguda i implementada estadística de segon ordre. Per tal d’aconseguir-ho, s’usen expressions basades en el Teorema Central del Límit i de les sèries Edgeworth com a bones aproximacions. Finalment, tant l’estadística convencional com l’estadística proposada són comparades, en termes de la ROC, per tal de determinar quin detector no coherent ofereix millor prestacions en cada situació.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider systems that can be described in terms of two kinds of degree of freedom. The corresponding ordering modes may, under certain conditions, be coupled to each other. We may thus assume that the primary ordering mode gives rise to a diffusionless first-order phase transition. The change of its thermodynamic properties as a function of the secondary-ordering-mode state is then analyzed. Two specific examples are discussed. First, we study a three-state Potts model in a binary system. Using mean-field techniques, we obtain the phase diagram and different properties of the system as a function of the distribution of atoms on the different lattice sites. In the second case, the properties of a displacive structural phase transition of martensitic type in a binary alloy are studied as a function of atomic order. Because of the directional character of the martensitic-transition mechanism, we find only a very weak dependence of the entropy on atomic order. Experimental results are found to be in quite good agreement with theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the behavior of the random-bond Ising model at zero temperature by numerical simulations for a variable amount of disorder. The model is an example of systems exhibiting a fluctuationless first-order phase transition similar to some field-induced phase transitions in ferromagnetic systems and the martensitic phase transition appearing in a number of metallic alloys. We focus on the study of the hysteresis cycles appearing when the external field is swept from positive to negative values. By using a finite-size scaling hypothesis, we analyze the disorder-induced phase transition between the phase exhibiting a discontinuity in the hysteresis cycle and the phase with the continuous hysteresis cycle. Critical exponents characterizing the transition are obtained. We also analyze the size and duration distributions of the magnetization jumps (avalanches).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the driving-rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of the partition of a system of initial size V into a sequence of fragments s1,s2,s3 . . . . By assuming a scaling hypothesis for the probability p(s;V) of obtaining a fragment of a given size, we deduce that the final distribution of fragment sizes exhibits power-law behavior. This minimal model is useful to understanding the distribution of avalanche sizes in first-order phase transitions at low temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general dynamical model for the first-order optical Fréedericksz transition incorporating spatial transverse inhomogeneities and hydrodynamic effects is discussed in the framework of a time-dependent Ginzburg-Landau model. The motion of an interface between two coexisting states with different director orientations is considered. A uniformly translating front solution of the dynamical equations for the motion of that interface is described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider an autonomous differential system in Rn with a periodic orbit and we give a new method for computing the characteristic multipliers associated to it. Our method works when the periodic orbit is given by the transversal intersection of n ¡ 1 codimension one hypersurfaces and is an alternative to the use of the first order variational equations. We apply it to study the stability of the periodic orbits in several examples, including a periodic solution found by Steklov studying the rigid body dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.