41 resultados para firing
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this paper, we present a matching model with adverse selection that explains why flows into and out of unemployment are much lower in Europe compared to North America, while employment-to-employment flows are similar in the two continents. In the model,firms use discretion in terms of whom to fire and, thus, low quality workers are more likely to be dismissed than high quality workers. Moreover, as hiring and firing costs increase, firms find it more costly to hire a bad worker and, thus, they prefer to hire out of the pool of employed job seekers rather than out of the pool of the unemployed, who are more likely to turn out to be 'lemons'. We use microdata for Spain and the U.S. and find that the ratio of the job finding probability of the unemployed to the job finding probability of employed job seekers was smaller in Spain than in the U.S. Furthermore, using U.S. data, we find that the discrimination of the unemployed increased over the 1980's in those states that raised firing costs by introducing exceptions to the employment-at-will doctrine.
Resumo:
Reductions in firing costs are often advocated as a way of increasingthe dynamism of labour markets in both developed and less developed countries. Evidence from Europe and the U.S. on the impact of firing costs has, however, been mixed. Moreover, legislative changes both in Europe and the U.S. have been limited. This paper, instead, examines the impact of the Colombian Labour Market Reform of 1990, which substantially reduced dismissal costs. I estimate the incidence of a reduction in firing costs on worker turnover by exploiting the temporal change in the Colombian labour legislation as well as the variability in coverage between formal and informal sector workers. Using a grouping estimator to control for common aggregate shocks and selection, I find that the exit hazard rates into and out of unemployment increased after the reform by over 1% for formal workers (covered by the legislation) relative to informal workers (uncovered). The increase of the hazards implies a net decrease in unemployment of a third of a percentage point, which accounts for about one quarter of the fall in unemployment during the period of study.
Resumo:
Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (~10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.
Resumo:
Minimal models for the explanation of decision-making in computational neuroscience are based on the analysis of the evolution for the average firing rates of two interacting neuron populations. While these models typically lead to multi-stable scenario for the basic derived dynamical systems, noise is an important feature of the model taking into account finite-size effects and robustness of the decisions. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker-Planck partial differential equation. In particular, we discuss the existence, positivity and uniqueness for the solution of the stationary equation, as well as for the time evolving problem. Moreover, we prove convergence of the solution to the the stationary state representing the probability distribution of finding the neuron families in each of the decision states characterized by their average firing rates. Finally, we propose a numerical scheme allowing for simulations performed on the Fokker-Planck equation which are in agreement with those obtained recently by a moment method applied to the stochastic differential system. Our approach leads to a more detailed analytical and numerical study of this decision-making model in computational neuroscience.
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.
Resumo:
The ceramic shell is a material mainly used for making foundry molds. This research demonstrates that ceramic shell can be used for making sculptures with exceptional definition in its finish. The research has identified a number of advantages of the material to meet the challenges of an artist during the making of a sculpture. The research has been developed in six stages: In the first stage data were collected from the chaff as the process material. This was the starting point for research. In the second stage, we have set the appropriate composition of the slurry, both in percentage and type of binder, and firing curve. To this end, we evaluated the application characteristics, thickness, drying, mechanical strength, the reduction coefficient and porosity. In the third stage it was observed that the husk is suitable for all types of materials acting as support. It was also found that the slurry can be used with various sculptural processes: modeling, molding using silicone or plaster mold, shuttering, with internal metal frame, and so on. In addition, we have established methods to repair and modify the husk by hand and power tools. In the fourth stage we have found ways to modify the surface of the husk with other minerals that affect the structure: introduction of filing of copper, bronze and iron in the slurry ceramics, different staining procedure in hot or cold, by enamel slip, and so on. In the fifth stage sculptures were made using the methods established in the previous stages, to verify this hypothesis. The sixth stage, which is annexed, contains a new method to process the ceramic shell as a mold in casting that emerged from the proven methods in the investigation.
Resumo:
Des del segon quart del s. I aC i, especialment, durant el regnat d’August, es va desenvolupar a l’antiga província Tarraconensis un sistema productiu centrat en l’explotació agrària vitivinícola amb una finalitat clarament comercial. La majoria d’assentament vitivinícoles es troben emplaçats al litoral català, associats de vegades a figlinae que fabricaven les àmfores per al transport i comerç de l’excedent vinícola. No obstant, a l’àrea del Vallès Occidental i del Baix Llobregat es troben una sèrie de vil•les vinculades a la producció de vi i a la fabricació d’àmfores que han proporcionat restes molt significatives sobre la contribució d’aquesta zona a l’expansió econòmica de la província. La caracterització arqueològica i arqueomètrica d’un gran nombre d’àmfores procedents de diversos tallers ceràmics situats al Vallès Occidental i al Baix Llobregat, utilitzant diverses tècniques d’anàlisi química, mineralògica i petrogràfica, ha portat a establir quins tipus d’àmfores es van fabricar a cada taller i de quina manera. S’han identificat alguns dels processos tecnològics de la cadena operativa: la selecció i processat de les matèries primeres per conformar la pasta procedents, generalment, de l’àrea on es troba cada centre de producció, el modelatge, l’assecat i la cocció de les peces. En alguns dels casos analitzats, s’ha identificat quins tipus de contenidors van ser importants a l’establiment i la seva provinença. La integració d’aquests resultats en la base de dades analítica que disposa l’ERAAUB ha permès avaluar el grau d’estandardització dels processos tecnològics en aquesta àrea. La contrastació final amb les dades històriques i arqueològiques contribueix al coneixement arqueològic de les àmfores vinàries de la Tarraconensis i, a través d’elles, al coneixement de les societats que les van fabricar, comercialitzar i utilitzar.
Resumo:
Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
Resumo:
Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.
Resumo:
Kv3.1 and Kv3.2 K+ channel proteins form similar voltage-gated K+ channels with unusual properties, including fast activation at voltages positive to −10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3.2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1–Kv3.2 current type can have functions other than facilitating high-frequency firing.
Resumo:
Extensive theoretical and experimental work on the neuronal correlates of visual attention raises two hypotheses about the underlying mechanisms. The first hypothesis, named biased competition, originates from experimental single-cell recordings that have shown that attention upmodulates the firing rates of the neurons encoding the attended features and downregulates the firing rates of the neurons encoding the unattended features. Furthermore, attentional modulation of firing rates increases along the visual pathway. The other, newer hypothesis assigns synchronization a crucial role in the attentional process. It stems from experiments that have shown that attention modulates gamma-frequency synchronization. In this paper, we study the coexistence of the two phenomena using a theoretical framework. We find that the two effects can vary independently of each other and across layers. Therefore, the two phenomena are not concomitant. However, we show that there is an advantage in the processing of information if rate modulation is accompanied by gamma modulation, namely that reaction times are shorter, implying behavioral relevance for gamma synchronization.
Resumo:
We analyze the political support for employment protection legislation. Unlike my previous work on the same topic, this paper pays a lot of attention to the role of obsolescence in the growth process. In voting in favour of employment protection, incumbent employees trade off lower living standards (because employment protection maintains workers in less productive activities) against longer job duration. The support for employment protection will then depend on the value of the latter relative to the cost of the former. We highlight two key deeterminants of this trade-off: first, the workers' bargaining power, second, the economy's growth rate-more precisely its rate of creative destruction.
Resumo:
We develop a model to analyse the implications of firing costs on incentives for R&D and international specialization. The Key idea is paying the firing cost, the country with a rigid labor market will tend to produce relatively secure goods, at a late stage of their product life cycle. Under international trade, an international product cycle emerges where, roughly, new goods are first produced in the low firing cost country will specialize in 'secondary innovations', that is, improvements in existing goods, while the low firing cost country will more specialize in 'primary innovation', that is, invention of new goods.
Resumo:
We lay out a model of wage bargaining with two leading features:bargaining is ex post to relevant investments and there isindividual bargaining in firms without a Union. We compareindividual ex post bargaining to coordinated ex post bargainingand we analyze the effects on wage formation. As opposed to exante bargaining models, the costs of destroying the employmentrelationship play a crucial role in determining wages. Highfiring costs in particular yield a rent for employees. Ourtheory points to a employer size-wage effect that is independentof the production function and market power. We derive a simpleleast squares specification from the theoretical model thatallow us to estimate components of the wage premium fromcoordination. We reject the hypothesis that labor coordinationdoes not alter the extensive form of the bargaining game. Laborcoordination substantially increases bargaining power butdecreases labor's ability to pose costly threats to the firm.