2 resultados para epithelium cell

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inner ear is responsible for the perception of motion and sound in vertebrates. Its functional unit, the sensory patch, contains mechanosensory hair cells innervated by sensory neurons from the statoacoustic ganglion (SAG) that project to the corresponding nuclei in the brainstem. How hair cells develop at specific positions, and how otic neurons are sorted to specifically innervate each endorgan and to convey the extracted information to the hindbrain is not completely understood. In this work, we study the generation of macular sensory patches and investigate the role of Hedgehog (Hh) signaling in the production of their neurosensory elements. Using zebrafish transgenic lines to visualize the dynamics of hair cell and neuron production, we show that the development of the anterior and posterior maculae is asynchronic, suggesting they are independently regulated. Tracing experiments demonstrate the SAG is topologically organized in two different neuronal subpopulations, which are spatially segregated and innervate specifically each macula. Functional experiments identify the Hh pathway as crucial in coordinating the production of hair cells in the posterior macula, and the formation of its specific innervation. Finally, gene expression analyses suggest that Hh influences the balance between different SAG neuronal subpopulations. These results lead to a model in which Hh orients functionally the development of inner ear towards an auditory fate in all vertebrate species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among all inflammatory cells involved in COPD, those with a cytolytic or elastolytic activity are thought to play a key role in the pathogenesis of the disease. However, there is no data about the infiltration of cells expressing the CD57 marker in small airways and parenchyma of COPD patients. In this study, surgical specimens from 43 subjects undergoing lung resection due to lung cancer (9 non-smokers, 18 smokers without COPD and 16 smokers with moderate COPD) and 16 patients undergoing double lung transplantation for very severe COPD were examined. CD57+ cells, neutrophils, macrophages and mast cells infiltrating bronchioles (epithelium, smooth muscle and connective tissue) and parenchymal interstitium were localized and quantified by immunohistochemical analysis. Compared to the other groups, the small airways of very severe COPD patients showed a significantly higher density of CD57+ cells, mainly infiltrated in the connective tissue (p=0.001), and a significantly higher density of neutrophils located characteristically in the epithelium (p=0.037). Also, the density of neutrophils was significantly higher in parenchyma of very severe COPD patients compared with the rest of the groups (p=0.001). Finally, there were significant correlations between the bronchiolar density of CD57+ cells and the FEV1 values (R=-0.43, p=0.022), as well as between the parenchymal density of neutrophils and macroscopic emphysema degree (R=0.43, p=0.048) in COPD groups. These results show that CD57+ cells may be involved in COPD pathogenesis, especially in the most severe stages of the disease.