4 resultados para endodermal cell-walls
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The plant cell wall is a strong fibrillar network that gives each cell its stable shape. It is constituted by a network of cellulose microfibrils embedded in a matrix of polysaccharides, such as xyloglucans. To enlarge, cells selectively loosen this network. Moreover, there is a pectin-rich intercellular material, the middle lamella, cementing together the walls of adjacent plant cells. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a group of enzymes involved in the reorganisation of the cellulose-xyloglucan framework by catalysing cleavage and re-ligation of the xyloglucan chains in the plant cell wall, and are considered cell wall loosening agents. In the laboratory, it has been isolated and characterised a XTH gene, ZmXTH1, from an elongation root cDNA library of maize. To address the cellular function of ZmXTH1, transgenic Arabidopsis thaliana plants over-expressing ZmXTH1 (under the control of the CaMV35S promoter) were generated. The aim of the work performed was therefore the characterisation of these transgenic plants at the ultrastructural level, by transmission electron microscopy (TEM).The detailed cellular phenotype of transgenic plants was investigated by comparing ultra-thin transverse sections of basal stem of 5-weeks old plants of wild type (Col 0) and 35S-ZmXTH1 Arabidopsis plants. Transgenic plants show modifications in the cell walls, particularly a thicker middle lamella layer with respect the wild type plants, supporting the idea that the overexpression of ZmXTH1 could imply a pronounced wall-loosening. In sum, the work carried out reinforces the idea that ZmXTH1 is involved in the cell wall loosening process in maize.
Resumo:
The outer part of the tetraspora cell wall in Gelidium crinale (Turner) J.V. Lamour. and G. spathulatum (Kutz.) Bornet is morphologically described in relation to the movements and displacement of these spores when they settle on a substratum. We also describe the mechanism of adhesión and the transformations undergone by this mechanism over time. The cell wall shows a network of fibrillar threads embedded in abundant mucilage. The deformations that tetraspores undergo show that the cell wall is relatively elastic.
Resumo:
This review focuses on the role of proteins in the production and maintenance of foam in both sparkling wines and beer. The quality of the foam in beer but especially in sparkling wines depends, among other factors, on the presence of mannoproteins released from the yeast cell walls during autolysis. These proteins are hydrophobic, highly glycosylated, and their molecular masses range from 10 to 200 kDa characteristics that allow mannoproteins to surround and thus stabilize the gas bubbles of the foam. Both the production and stabilization of foam also depend on other proteins. In wine, these include grape-derived proteins such as vacuolar invertase; in beer, barley-derived proteins, such as LTP1, protein Z, and hordein-derived polypeptides, are even more important in this respect than mannoproteins
Resumo:
Aculeacin A is a lipopeptide that inhibits ,B-glucan synthesis in yeasts. A number of Saccharomyces cerevisiae mutants resistant to this antibiotic were isolated, and four loci (ACRI, ACR2, ACR3, and ACR4) whose products are involved in the sensitivity to aculeacin A of yeast ceils were defined. Mutants containing mutations in the four loci were also resistant to echinocandin B, another member of this lipopeptide family of antibiotics. In contrast, acri, acr3, and acr4 mutants were resistant to papulacandin B (an antibiotic containing a disaccharide linked to two fatty acid chains that also inhibits P-glucan synthesis), but acr2 mutants were susceptible'to this antibiotic. This result defines common and specific steps in the entry and action of aculeacin A and papulacandin B. The analysis of double mutants revealed an epistatic effect of the acr2 mutation on the other three mutations. Cell walls of the four different mutants did not show significant alterations in composition with respect to the parental strain, and in vitro glucan synthase activity was also unaffected. However, cell surface hydrophobicity in three of the mutants was considerably decreased with respect to the parental strain.