146 resultados para dissociation energy
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In the present paper we discuss and compare two different energy decomposition schemes: Mayer's Hartree-Fock energy decomposition into diatomic and monoatomic contributions [Chem. Phys. Lett. 382, 265 (2003)], and the Ziegler-Rauk dissociation energy decomposition [Inorg. Chem. 18, 1558 (1979)]. The Ziegler-Rauk scheme is based on a separation of a molecule into fragments, while Mayer's scheme can be used in the cases where a fragmentation of the system in clearly separable parts is not possible. In the Mayer scheme, the density of a free atom is deformed to give the one-atom Mulliken density that subsequently interacts to give rise to the diatomic interaction energy. We give a detailed analysis of the diatomic energy contributions in the Mayer scheme and a close look onto the one-atom Mulliken densities. The Mulliken density ρA has a single large maximum around the nuclear position of the atom A, but exhibits slightly negative values in the vicinity of neighboring atoms. The main connecting point between both analysis schemes is the electrostatic energy. Both decomposition schemes utilize the same electrostatic energy expression, but differ in how fragment densities are defined. In the Mayer scheme, the electrostatic component originates from the interaction of the Mulliken densities, while in the Ziegler-Rauk scheme, the undisturbed fragment densities interact. The values of the electrostatic energy resulting from the two schemes differ significantly but typically have the same order of magnitude. Both methods are useful and complementary since Mayer's decomposition focuses on the energy of the finally formed molecule, whereas the Ziegler-Rauk scheme describes the bond formation starting from undeformed fragment densities
Resumo:
The process of hydrogen desorption from amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in a-Si is about 1.15 eV. It is shown that this result is valid for a-Si:H films, too.
Resumo:
The process of hydrogen desorption from amorphous silicon (ɑ-Si) nanoparticles grown by plasmaenhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 °C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in ɑ-Si is about 1.15 eV. It is shown that this result is valid for ɑ-Si:H films, too
Resumo:
A dual-Regge model with a nonlinear proton Regge trajectory in the missing mass (MX2) channel, describing the experimental data on low-mass single diffraction dissociation (SDD), is constructed. Predictions for the LHC energies are given.
Resumo:
The present work provides a generalization of Mayer's energy decomposition for the density-functional theory (DFT) case. It is shown that one- and two-atom Hartree-Fock energy components in Mayer's approach can be represented as an action of a one-atom potential VA on a one-atom density ρ A or ρ B. To treat the exchange-correlation term in the DFT energy expression in a similar way, the exchange-correlation energy density per electron is expanded into a linear combination of basis functions. Calculations carried out for a number of density functionals demonstrate that the DFT and Hartree-Fock two-atom energies agree to a reasonable extent with each other. The two-atom energies for strong covalent bonds are within the range of typical bond dissociation energies and are therefore a convenient computational tool for assessment of individual bond strength in polyatomic molecules. For nonspecific nonbonding interactions, the two-atom energies are low. They can be either repulsive or slightly attractive, but the DFT results more frequently yield small attractive values compared to the Hartree-Fock case. The hydrogen bond in the water dimer is calculated to be between the strong covalent and nonbonding interactions on the energy scale
Resumo:
We investigate the dissociation of few-electron circular vertical semiconductor double quantum dot artificial molecules at 0 T as a function of interdot distance. A slight mismatch introduced in the fabrication of the artificial molecules from nominally identical constituent quantum wells induces localization by offsetting the energy levels in the quantum dots by up to 2 meV, and this plays a crucial role in the appearance of the addition energy spectra as a function of coupling strength particularly in the weak coupling limit.
Resumo:
In this article, a real-world case- study is presented with two general objectives: to give a clear and simple illustrative example of application of social multi-criteria evaluation (SMCE) in the field of rural renewable energy policies, and to help in understanding to what extent and under which circumstances solar energy is suitable for electrifying isolated farmhouses. In this sense, this study might offer public decision- makers some insight on the conditions that favour the diffusion of renewable energy, in order to help them to design more effective energy policies for rural communities.
Resumo:
In this paper we analyze the determination of "key" sectors in the final energy consumption. We approach this issue from an input-output perspective and we design a methodology based on the elasticities of the demands of final energy consumption. As an exercise, we apply the proposed methodology to the Spanish economy. The analysis allows us to indicate the greater or lesser relevance of the different sectors in the consumption of final energy, pointing out which sectors deserve greater attention in the Spanish case and showing the implications for energy policy.
Resumo:
The paper analyses how the EU foreign policy towards Georgia changed after the Rose Revolution, reaching greater levels of involvement and assistance. It is argued that the pro-western and reformist new government in Georgia triggered a new orientation in the EU foreign policy towards the country based on a logic of appropriateness, that is EU´s values, in addition to energy interests. Comparative analysis in the Southern-Caucasus and other Eastern-European countries shows how reformist and pro-EU governments receive more EU support and assistance. This does not mean that material interest do not play an important role. However, the EU seems to be coherent with its values when regarding the European neighbourhood.
Resumo:
Actualment, la resposta de la majoria d’instrumentació operacional i dels dosímetres personals utilitzats en radioprotecció per a la dosimetria neutrònica és altament dependent de l’energia dels espectres neutrònics a analitzar, especialment amb camps neutrònics amb una important component intermitja. En conseqüència, la interpretació de les lectures d’aquests aparells es complicada si no es té un coneixement previ de la distribució espectral de la fluència neutrònica en els punts d’interès. El Grup de Física de les Radiacions de la Universitat Autònoma de Barcelona (GFR-UAB) ha desenvolupat en els últims anys un espectròmetre de neutrons basat en un Sistema d’Esferes Bonner (BSS) amb un contador proporcional d’3He com a detector actiu. Els principals avantatges dels espectròmetres de neutrons per BSS són: la seva resposta isotròpica, la possibilitat de discriminar la component neutrònica de la gamma en camps mixtos, i la seva alta sensibilitat neutrònica als nivells de dosi analitzats. Amb aquestes característiques, els espectròmetres neutrònics per BSS compleixen amb els estándards de les últimes recomanacions de la ICRP i poden ser utilitzats també en el camp de la dosimetria neutrònica per a la mesura de dosis en el rang d’energia que va dels tèrmics fins als 20 MeV, en nou ordres de magnitud. En el marc de la col•laboració entre el GFR - UAB i el Laboratorio Nazionale di Frascati – Istituto Nazionale di Fisica Nucleare (LNF-INFN), ha tingut lloc una experiència comparativa d’espectrometria per BSS amb els feixos quasi monoenergètics de 2.5 MeV i 14 MeV del Fast Neutron Generator de l’ENEA. En l’exercici s’ha determinat l’espectre neutrònic a diferents distàncies del blanc de l’accelerador, aprofitant el codi FRUIT recentment desenvolupat pel grup LNF. Els resultats obtinguts mostren una bona coherència entre els dos espectròmetres i les dades mesurades i simulades.
Resumo:
The methodology of Multi-Scale Integrated The methodology of Multi-Scale Integrated Analysis of Societal Metabolism (MSIASM) is applied to analyze the Chinese economy. This paper presents four tasks: (i) identifying a set of benchmarks that makes it possible to compare various characteristics of the Chinese economy with those of other country groups and the world (level) average; (ii) explaining the differences over the selected set of benchmarks, by looking at the characteristics of the various sub-sectors of the Chinese economy; (iii) understanding existing trends and future feasible future development paths for China by studying the existence of reciprocal constraints between the whole economy and its sub-sectors; and (iv) examining plausible future scenarios of development.
Resumo:
Economic development goes hand in hand with an increase in the consumption of natural resources. Some analysts use material flows to describe such relationship [Eurostat 2001, Weisz et al., 2006], or exergy [Ayres et al., 2003]. Instead this paper will use a characterisation of the exosomatic energy metabolism based on expected benchmark values to describe possible constraints to economic development posed by available human time and energy. The aim of the paper is to identify types of exosomatic energy metabolism of different societies to interpret its consequences for economic development. This is done with the application of the accounting methodology called Multi-Scale Integrated Analysis of Societal Metabolism (MSIASM) to the particular case of energy metabolism for the analysis of the economies of Brazil, Chile and Venezuela.
Resumo:
The aim of the paper is to analyse the economic impact of alternative policies implemented on the energy activities of the Catalan production system. Specifically, we analyse the effects of a tax on intermediate energy uses, a reduction in the final production of energy, and a reduction in intermediate energy uses. The methodology involves two versions of the input-output price model: a competitive price formulation and a mark-up price formulation. The input-output price framework will make it possible to evaluate how the alternative measures modify production prices, consumption prices, private welfare, and intermediate energy uses. The empirical application is for the Catalan economy and uses economic data for the year 2001.
Why Catalonia will see its energy metabolism increase in the near future: an application of MuSIASEM
Resumo:
This paper applies the so-called Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) to the economy of the Spanish region of Catalonia. By applying Georgescu-Roegen's fund-flow model, it arrives at the conclusion that within a context of the end of cheap oil, the current development model based on the growth of low productivity sectors such as services and construction must change. The change is needed not only because of the increasing scarcity of affordable energy carriers, or because of the increasing environmental impact that the present development represents, but also because of an ageing population that demands labour productivity gains. This will imply industry requiring more energy consumption per worker in order to increase its productivity, and therefore its competitiveness. Thus, we conclude that energy intensity, and exosomatic energy metabolism of Catalonia will increase dramatically in the near future unless major conservation efforts are implemented in both the household and transport sectors.
Resumo:
The 1st chapter of this work presents the different experiments and collaborations in which I am involved during my PhD studies of Physics. Following those descriptions, the 2nd chapter is dedicated to how the radiation affects the silicon sensors, as well as some experimental measurements carried out at CERN (Geneve, Schwitzerland) and IFIC (Valencia, Spain) laboratories. Besides the previous investigation results, this chapter includes the most recent scientific papers appeared in the latest RD50 (Research & Development #50) Status Report, published in January 2007, as well as some others published this year. The 3rd and 4th are dedicated to the simulation of the electrical behavior of solid state detectors. In chapter 3 are reported the results obtained for the illumination of edgeless detectors irradiated at different fluences, in the framework of the TOSTER Collaboration. The 4th chapter reports about simulation design, simulation and fabrication of a novel 3D detector developed at CNM for ions detection in the future ITER fusion reactor. This chapter will be extended with irradiation simulations and experimental measurements in my PhD Thesis.