6 resultados para disease stage

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain). Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods: Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results: We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89) and after (USA and Catalonia 1990–2001). Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion: Our results suggest that access to better treatments and quality of care contributed to large improvements in survival in Catalonia. On the other hand, we obtained detailed breast cancer survival functions that will be used for modeling the effect of screening and adjuvant treatments in Catalonia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain). Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods: Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results: We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89) and after (USA and Catalonia 1990–2001). Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion: Our results suggest that access to better treatments and quality of care contributed to large improvements in survival in Catalonia. On the other hand, we obtained detailed breast cancer survival functions that will be used for modeling the effect of screening and adjuvant treatments in Catalonia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Although we know that exacerbations are key events in chronic obstructive pulmonary disease (COPD), our understanding of their frequency, determinants, and effects is incomplete. In a large observational cohort, we tested the hypothesis that there is a frequent-exacerbation phenotype of COPD that is independent of disease severity. Methods We analyzed the frequency and associations of exacerbation in 2138 patients enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End points (ECLIPSE) study. Exacerbations were defined as events that led a care provider to prescribe antibiotics or corticosteroids (or both)or that led to hospitalization (severe exacerbations). Exacerbation frequency was observed over a period of 3 years. Results Exacerbations became more frequent (and more severe) as the severity of COPD increased; exacerbation rates in the first year of follow-up were 0.85 per person for patients with stage 2 COPD (with stage defined in accordance with Global Initiative for Chronic Obstructive Lung Disease [GOLD] stages), 1.34 for patients with stage 3, and 2.00 for patients with stage 4. Overall, 22% of patients with stage 2 disease, 33% with stage 3, and 47% with stage 4 had frequent exacerbations (two or more in the first year of follow-up). The single best predictor of exacerbations, across all GOLD stages, was a history of exacerbations. The frequent-exacerbation phenotype appeared to be relatively stable over a period of 3 years and could be predicted on the basis of the patient"s recall of previous treated events. In addition to its association with more severe disease and prior exacerbations, the phenotype was independently associated with a history of gastroesophageal reflux or heartburn, poorer quality of life, and elevated white-cell count. Conclusions Although exacerbations become more frequent and more severe as COPD progresses, the rate at which they occur appears to reflect an independent susceptibility phenotype. This has implications for the targeting of exacerbation-prevention strategies across the spectrum of disease severity. (Funded by GlaxoSmithKline; ClinicalTrials .gov number, NCT00292552.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decades drug discovery practice has escaped from the complexity of the formerly used phenotypic screening in animals to focus on assessing drug effects on isolated protein targets in the search for drugs that exclusively and potently hit one selected target, thought to be critical for a given disease, while not affecting at all any other target to avoid the occurrence of side-effects. However, reality does not conform to these expectations, and, conversely, this approach has been concurrent with increased attrition figures in late-stage clinical trials, precisely due to lack of efficacy and safety. In this context, a network biology perspective of human disease and treatment has burst into the drug discovery scenario to bring it back to the consideration of the complexity of living organisms and particularly of the (patho)physiological environment where protein targets are (mal)functioning and where drugs have to exert their restoring action. Under this perspective, it has been found that usually there is not one but several disease-causing genes and, therefore, not one but several relevant protein targets to be hit, which do not work on isolation but in a highly interconnected manner, and that most known drugs are inherently promiscuous. In this light, the rationale behind the currently prevailing single-target-based drug discovery approach might even seem a Utopia, while, conversely, the notion that the complexity of human disease must be tackled with complex polypharmacological therapeutic interventions constitutes a difficult-torefuse argument that is spurring the development of multitarget therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To develop systems in order to detect Alzheimer’s disease we want to use EEG signals. Available database is raw, so the first step must be to clean signals properly. We propose a new way of ICA cleaning on a database recorded from patients with Alzheimer's disease (mildAD, early stage). Two researchers visually inspected all the signals (EEG channels), and each recording's least corrupted (artefact-clean) continuous 20 sec interval were chosen for the analysis. Each trial was then decomposed using ICA. Sources were ordered using a kurtosis measure, and the researchers cleared up to seven sources per trial corresponding to artefacts (eye movements, EMG corruption, EKG, etc), using three criteria: (i) Isolated source on the scalp (only a few electrodes contribute to the source), (ii) Abnormal wave shape (drifts, eye blinks, sharp waves, etc.), (iii) Source of abnormally high amplitude ( �100 �V). We then evaluated the outcome of this cleaning by means of the classification of patients using multilayer perceptron neural networks. Results are very satisfactory and performance is increased from 50.9% to 73.1% correctly classified data using ICA cleaning procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decades drug discovery practice has escaped from the complexity of the formerly used phenotypic screening in animals to focus on assessing drug effects on isolated protein targets in the search for drugs that exclusively and potently hit one selected target, thought to be critical for a given disease, while not affecting at all any other target to avoid the occurrence of side-effects. However, reality does not conform to these expectations, and, conversely, this approach has been concurrent with increased attrition figures in late-stage clinical trials, precisely due to lack of efficacy and safety. In this context, a network biology perspective of human disease and treatment has burst into the drug discovery scenario to bring it back to the consideration of the complexity of living organisms and particularly of the (patho)physiological environment where protein targets are (mal)functioning and where drugs have to exert their restoring action. Under this perspective, it has been found that usually there is not one but several disease-causing genes and, therefore, not one but several relevant protein targets to be hit, which do not work on isolation but in a highly interconnected manner, and that most known drugs are inherently promiscuous. In this light, the rationale behind the currently prevailing single-target-based drug discovery approach might even seem a Utopia, while, conversely, the notion that the complexity of human disease must be tackled with complex polypharmacological therapeutic interventions constitutes a difficult-torefuse argument that is spurring the development of multitarget therapies.