42 resultados para data mining applications

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this project a research both in finding predictors via clustering techniques and in reviewing the Data Mining free software is achieved. The research is based in a case of study, from where additionally to the KDD free software used by the scientific community; a new free tool for pre-processing the data is presented. The predictors are intended for the e-learning domain as the data from where these predictors have to be inferred are student qualifications from different e-learning environments. Through our case of study not only clustering algorithms are tested but also additional goals are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabajo de investigación que realiza un estudio clasificatorio de las asignaturas matriculadas en la carrera de Administración y Dirección de Empresas de la UOC en relación a su resultado. Se proponen diferentes métodos y modelos de comprensión del entorno en el que se realiza el estudio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of methods to explore data from educational settings, to understand better the learning process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marketing scholars have suggested a need for more empirical research on consumer response to malls, in order to have a better understanding of the variables that explain the behavior of the consumers. The segmentation methodology CHAID (Chi-square automatic interaction detection) was used in order to identify the profiles of consumers with regard to their activities at malls, on the basis of socio-demographic variables and behavioral variables (how and with whom they go to the malls). A sample of 790 subjects answered an online questionnaire. The CHAID analysis of the results was used to identify the profiles of consumers with regard to their activities at malls. In the set of variables analyzed the transport used in order to go shopping and the frequency of visits to centers are the main predictors of behavior in malls. The results provide guidelines for the development of effective strategies to attract consumers to malls and retain them there.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the past, sensors networks in cities have been limited to fixed sensors, embedded in particular locations, under centralised control. Today, new applications can leverage wireless devices and use them as sensors to create aggregated information. In this paper, we show that the emerging patterns unveiled through the analysis of large sets of aggregated digital footprints can provide novel insights into how people experience the city and into some of the drivers behind these emerging patterns. We particularly explore the capacity to quantify the evolution of the attractiveness of urban space with a case study of in the area of the New York City Waterfalls, a public art project of four man-made waterfalls rising from the New York Harbor. Methods to study the impact of an event of this nature are traditionally based on the collection of static information such as surveys and ticket-based people counts, which allow to generate estimates about visitors’ presence in specific areas over time. In contrast, our contribution makes use of the dynamic data that visitors generate, such as the density and distribution of aggregate phone calls and photos taken in different areas of interest and over time. Our analysis provides novel ways to quantify the impact of a public event on the distribution of visitors and on the evolution of the attractiveness of the points of interest in proximity. This information has potential uses for local authorities, researchers, as well as service providers such as mobile network operators.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this Master Thesis is to discover more about Girona’s image as a tourism destination from different agents’ perspective and to study its differences on promotion or opinions. In order to meet this objective, three components of Girona’s destination image will be studied: attribute-based component, the holistic component, and the affective component. It is true that a lot of research has been done about tourism destination image, but it is less when we are talking about the destination of Girona. Some studies have already focused on Girona as a tourist destination, but they used a different type of sample and different methodological steps. This study is new among destination studies in the sense that it is based only on textual online data and it follows a methodology based on text-miming. Text-mining is a kind of methodology that allows people extract relevant information from texts. Also, after this information is extracted by this methodology, some statistical multivariate analyses are done with the aim of discovering more about Girona’s tourism image

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The European Space Agency's Gaia mission will create the largest and most precise three dimensional chart of our galaxy (the Milky Way), by providing unprecedented position, parallax, proper motion, and radial velocity measurements for about one billion stars. The resulting catalogue will be made available to the scientific community and will be analyzed in many different ways, including the production of a variety of statistics. The latter will often entail the generation of multidimensional histograms and hypercubes as part of the precomputed statistics for each data release, or for scientific analysis involving either the final data products or the raw data coming from the satellite instruments. In this paper we present and analyze a generic framework that allows the hypercube generation to be easily done within a MapReduce infrastructure, providing all the advantages of the new Big Data analysis paradigmbut without dealing with any specific interface to the lower level distributed system implementation (Hadoop). Furthermore, we show how executing the framework for different data storage model configurations (i.e. row or column oriented) and compression techniques can considerably improve the response time of this type of workload for the currently available simulated data of the mission. In addition, we put forward the advantages and shortcomings of the deployment of the framework on a public cloud provider, benchmark against other popular solutions available (that are not always the best for such ad-hoc applications), and describe some user experiences with the framework, which was employed for a number of dedicated astronomical data analysis techniques workshops.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The European Space Agency's Gaia mission will create the largest and most precise three dimensional chart of our galaxy (the Milky Way), by providing unprecedented position, parallax, proper motion, and radial velocity measurements for about one billion stars. The resulting catalogue will be made available to the scientific community and will be analyzed in many different ways, including the production of a variety of statistics. The latter will often entail the generation of multidimensional histograms and hypercubes as part of the precomputed statistics for each data release, or for scientific analysis involving either the final data products or the raw data coming from the satellite instruments. In this paper we present and analyze a generic framework that allows the hypercube generation to be easily done within a MapReduce infrastructure, providing all the advantages of the new Big Data analysis paradigmbut without dealing with any specific interface to the lower level distributed system implementation (Hadoop). Furthermore, we show how executing the framework for different data storage model configurations (i.e. row or column oriented) and compression techniques can considerably improve the response time of this type of workload for the currently available simulated data of the mission. In addition, we put forward the advantages and shortcomings of the deployment of the framework on a public cloud provider, benchmark against other popular solutions available (that are not always the best for such ad-hoc applications), and describe some user experiences with the framework, which was employed for a number of dedicated astronomical data analysis techniques workshops.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Information about the composition of regulatory regions is of great value for designing experiments to functionally characterize gene expression. The multiplicity of available applications to predict transcription factor binding sites in a particular locus contrasts with the substantial computational expertise that is demanded to manipulate them, which may constitute a potential barrier for the experimental community. Results: CBS (Conserved regulatory Binding Sites, http://compfly.bio.ub.es/CBS) is a public platform of evolutionarily conserved binding sites and enhancers predicted in multiple Drosophila genomes that is furnished with published chromatin signatures associated to transcriptionally active regions and other experimental sources of information. The rapid access to this novel body of knowledge through a user-friendly web interface enables non-expert users to identify the binding sequences available for any particular gene, transcription factor, or genome region. Conclusions: The CBS platform is a powerful resource that provides tools for data mining individual sequences and groups of co-expressed genes with epigenomics information to conduct regulatory screenings in Drosophila.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En la presente memoria se detallan con exactitud los pasos y procesos realizados para construir una aplicación que posibilite el cruce de datos genéticos a partir de información contenida en bases de datos remotas. Desarrolla un estudio en profundidad del contenido y estructura de las bases de datos remotas del NCBI y del KEGG, documentando una minería de datos con el objetivo de extraer de ellas la información necesaria para desarrollar la aplicación de cruce de datos genéticos. Finalmente se establecen los programas, scripts y entornos gráficos que han sido implementados para la construcción y posterior puesta en marcha de la aplicación que proporciona la funcionalidad de cruce de la que es objeto este proyecto fin de carrera.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Con la mayor capacidad de los nodos de procesamiento en relación a la potencia de cómputo, cada vez más aplicaciones intensivas de datos como las aplicaciones de la bioinformática, se llevarán a ejecutar en clusters no dedicados. Los clusters no dedicados se caracterizan por su capacidad de combinar la ejecución de aplicaciones de usuarios locales con aplicaciones, científicas o comerciales, ejecutadas en paralelo. Saber qué efecto las aplicaciones con acceso intensivo a dados producen respecto a la mezcla de otro tipo (batch, interativa, SRT, etc) en los entornos no-dedicados permite el desarrollo de políticas de planificación más eficientes. Algunas de las aplicaciones intensivas de E/S se basan en el paradigma MapReduce donde los entornos que las utilizan, como Hadoop, se ocupan de la localidad de los datos, balanceo de carga de forma automática y trabajan con sistemas de archivos distribuidos. El rendimiento de Hadoop se puede mejorar sin aumentar los costos de hardware, al sintonizar varios parámetros de configuración claves para las especificaciones del cluster, para el tamaño de los datos de entrada y para el procesamiento complejo. La sincronización de estos parámetros de sincronización puede ser demasiado compleja para el usuario y/o administrador pero procura garantizar prestaciones más adecuadas. Este trabajo propone la evaluación del impacto de las aplicaciones intensivas de E/S en la planificación de trabajos en clusters no-dedicados bajo los paradigmas MPI y Mapreduce.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’èxit del Projecte Genoma Humà (PGH) l’any 2000 va fer de la “medicina personalitzada” una realitat més propera. Els descobriments del PGH han simplificat les tècniques de seqüenciació de tal manera que actualment qualsevol persona pot aconseguir la seva seqüència d’ADN complerta. La tecnologia de Read Mapping destaca en aquest tipus de tècniques i es caracteritza per manegar una gran quantitat de dades. Hadoop, el framework d’Apache per aplicacions intensives de dades sota el paradigma Map Reduce, resulta un aliat perfecte per aquest tipus de tecnologia i ha sigut l’opció escollida per a realitzar aquest projecte. Durant tot el treball es realitza l’estudi, l’anàlisi i les experimentacions necessàries per aconseguir un Algorisme Genètic innovador que utilitzi tot el potencial de Hadoop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treball de final de carrera de l'àrea de mineria de dades que té com a objectiu la implantació d'un projecte de

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En aquest treball, s'introduiran dos de les metodologies de desenvolupament dirigides per models més significatives: Model Driven Architecture (MDA) i Domain Specific Modeling (DSM). Així mateix, es presentarà un estudi comparatiu d'algunes de les diferents eines existents actualment al mercat que els hi donen suport.