42 resultados para cytoplasmic dynein
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
During activation, T lymphocytes become motile cells, switching from a spherical to a polarized shape. Chemokines and other chemotactic cytokines induce lymphocyte polarization with the formation of a uropod in the rear pole, where the adhesion receptors intercellular adhesion molecule-1 (ICAM-1), ICAM-3, and CD44 redistribute. We have investigated membrane-cytoskeleton interactions that play a key role in the redistribution of adhesion receptors to the uropod. Immunofluorescence analysis showed that the ERM proteins radixin and moesin localized to the uropod of human T lymphoblasts treated with the chemokine RANTES (regulated on activation, normal T cell expressed, and secreted), a polarization-inducing agent; radixin colocalized with arrays of myosin II at the neck of the uropods, whereas moesin decorated the most distal part of the uropod and colocalized with ICAM-1, ICAM-3, and CD44 molecules. Two other cytoskeletal proteins, ß-actin and ¿-tubulin, clustered at the cell leading edge and uropod, respectively, of polarized lymphocytes. Biochemical analysis showed that moesin coimmunoprecipitates with ICAM-3 in T lymphoblasts stimulated with either RANTES or the polarization- inducing anti-ICAM-3 HP2/19 mAb, as well as in the constitutively polarized T cell line HSB-2. In addition, moesin is associated with CD44, but not with ICAM-1, in polarized T lymphocytes. A correlation between the degree of moesin-ICAM-3 interaction and cell polarization was found as determined by immunofluorescence and immunoprecipitation analysis done in parallel. The moesin-ICAM-3 interaction was specifically mediated by the cytoplasmic domain of ICAM-3 as revealed by precipitation of moesin with a GST fusion protein containing the ICAM-3 cytoplasmic tail from metabolically labeled Jurkat T cell lysates. The interaction of moesin with ICAM-3 was greatly diminished when RANTES-stimulated T lymphoblasts were pretreated with the myosin-disrupting drug butanedione monoxime, which prevents lymphocyte polarization. Altogether, these data indicate that moesin interacts with ICAM-3 and CD44 adhesion molecules in uropods of polarized T cells; these data also suggest that these interactions participate in the formation of links between membrane receptors and the cytoskeleton, thereby regulating morphological changes during cell locomotion.
Resumo:
BACKGROUND: Few studies have evaluated the influence of colectomy on antineutrophil cytoplasmic antibody (ANCA) positivity in ulcerative colitis (UC). In small series of patients it has been suggested that ANCA positivity in UC might be predictive for development of pouchitis after colectomy. AIMS: To assess the prevalence of ANCA in UC patients treated by colectomy and a Brooke's ileostomy (UC-BI) or ileal pouch anal anastomosis (UC-IPAA), and the relation between the presence of ANCA, the type of surgery, and the presence of pouchitis. SUBJECTS: 63 UC patients treated by colectomy (32 with UC-BI and 31 with UC-IPAA), 54 UC, and 24 controls. METHODS: Samples were obtained at least two years after colectomy. ANCA were detected by indirect immunofluorescent assay. RESULTS: There were no differences between patients with (36.3%) or without pouchitis (35.0%) and between patients with UC (55%), UC-BI (40.6%), and UC-IPAA (35.4%). However, ANCA prevalence significantly decreases in the whole group of operated patients (38.0%) compared with non-operated UC (p = 0.044). CONCLUSIONS: The prevalence of ANCA in operated patients was significantly lower than in non-operated UC, suggesting that it might be related either to the presence of inflamed or diseased tissue. ANCA persistence is not related to the surgical procedure and it should not be used as a marker for predicting the development of pouchitis.
Resumo:
Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have beenreported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a generalagreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstreamof EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However,there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKIefficacy. We recently monitored gene expression profiles andsub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin,epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cellsensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated(up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times)of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second,loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breastcancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells.In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene,oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 functionalso leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands,and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. Therelevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypassthe antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades
Resumo:
Mutations in PARK7/DJ-1 gene are associated to autosomal recessive early onset forms of Parkinson"s disease (PD). Although large gene deletions have been linked to a loss-of-function phenotype, the pathogenic mechanism of missense mutations is less clear. The L166P mutation causes misfolding of DJ-1 protein and its degradation. L166P protein may also accumulate into insoluble cytoplasmic aggregates with a mechanism facilitated by the E3 ligase TNF receptor associated factor 6 (TRAF6). Upon proteasome impairment L166P activates the JNK/p38 MAPK apoptotic pathway by its interaction with TRAF and TNF Receptor Associated Protein (TTRAP). When proteasome activity is blocked in the presence of wild-type DJ-1, TTRAP forms aggregates that are localized to the cytoplasm or associated to nucleolar cavities, where it is required for a correct rRNA biogenesis. In this study we show that in post-mortem brains of sporadic PD patients TTRAP is associated to the nucleolus and to Lewy Bodies, cytoplasmic aggregates considered the hallmark of the disease. In SH-SY5Y neuroblastoma cells, misfolded mutant DJ-1 L166P alters rRNA biogenesis inhibiting TTRAP localization to the nucleolus and enhancing its recruitment into cytoplasmic aggregates with a mechanism that depends in part on TRAF6 activity. This work suggests that TTRAP plays a role in the molecular mechanisms of both sporadic and familial PD. Furthermore, it unveils the existence of an interplay between cytoplasmic and nucleolar aggregates that impacts rRNA biogenesis and involves TRAF6
Resumo:
Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy available in advanced stages. Nuclear corepressor (NCoR) is an essential regulator of gene transcription, and its function has been found deregulated in different types of cancer. In colorectal cancer cells, loss of nuclear NCoR is induced by Inhibitor of kappa B kinase (IKK) through the phosphorylation of specific serine residues. We here investigate whether NCoR function impacts in MM, which might have important diagnostic and prognostic significance. By IHC, we here determined the subcellular distribution of NCoR in a cohort of 63 primary invasive MM samples, and analyzed its possible correlation with specific clinical parameters. We therefore used a microarray-based strategy to determine global gene expression differences in samples with similar tumor stage, which differ in the presence of cytoplasmic or nuclear NCoR. We found that loss of nuclear NCoR results in upregulation of a specific cancer-related genetic signature, and is significantly associated with MM progression. Inhibition of IKK activity in melanoma cells reverts NCoR nuclear distribution and specific NCoR-regulated gene transcription. Analysis of public database demonstrated that inactivating NCoR mutations are highly prevalent in MM, showing features of driver oncogene.
Resumo:
We introduce and investigate a series of models for an infection of a diplodiploid host species by the bacterial endosymbiont Wolbachia. The continuous models are characterized by partial vertical transmission, cytoplasmic incompatibility and fitness costs associated with the infection. A particular aspect of interest is competitions between mutually incompatible strains. We further introduce an age-structured model that takes into account different fertility and mortality rates at different stages of the life cycle of the individuals. With only a few parameters, the ordinary differential equation models exhibit already interesting dynamics and can be used to predict criteria under which a strain of bacteria is able to invade a population. Interestingly, but not surprisingly, the age-structured model shows significant differences concerning the existence and stability of equilibrium solutions compared to the unstructured model.
Resumo:
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup-shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures-organelles complex (SO-complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO-complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO-complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus.
Resumo:
A study of the spermiogenesis and spermatozoa of Helicolenus dactylopterus was conducted. Females of this species have the capacity to store sperm within their ovaries, and male gametes have a considerable cytoplasmic mass surrounding their heads to survive the long period of intraovarian sperm storage. Our observations show that early spermatids are round-shaped cells and have a spherical nucleus with diffuse chromatin. The nuclear volume decreases as a result of progressive chromatin condensation during spermiogenesis, causing the nucleus to take on a U-shape. Flagellar insertion is not central to the nucleus but consistently occurs at an oblique angle towards one side of it. The flagellum is inserted into the nuclear fossa, without subsequent nuclear rotation. In mature spermatozoa, the flagellum is adjacent to the nucleus. A comparison of the spermatozoa in the testicular lobules and those in the intraovarian storage structures suggests that the increase in volume of the cytoplasmic mass may occur in the posterior region of the testis, in the testicular duct. Spermatozoa enter the ovary in groups that reach the ovarian lumen and are surrounded by the ovarian epithelium for storage in sperm storage crypts
Resumo:
UEV proteins are enzymatically inactive variants of the E2 ubiquitin-conjugating enzymes that regulate noncanonical elongation of ubiquitin chains. In Saccharomyces cerevisiae, UEV is part of the RAD6-mediated error-free DNA repair pathway. In mammalian cells, UEV proteins can modulate c-FOS transcription and the G2-M transition of the cell cycle. Here we show that the UEV genes from phylogenetically distant organisms present a remarkable conservation in their exon–intron structure. We also show that the human UEV1 gene is fused with the previously unknown gene Kua. In Caenorhabditis elegans and Drosophila melanogaster, Kua and UEV are in separated loci, and are expressed as independent transcripts and proteins. In humans, Kua and UEV1 are adjacent genes, expressed either as separate transcripts encoding independent Kua and UEV1 proteins, or as a hybrid Kua–UEV transcript, encoding a two-domain protein. Kua proteins represent a novel class of conserved proteins with juxtamembrane histidine-rich motifs. Experiments with epitope-tagged proteins show that UEV1A is a nuclear protein, whereas both Kua and Kua–UEV localize to cytoplasmic structures, indicating that the Kua domain determines the cytoplasmic localization of Kua–UEV. Therefore, the addition of a Kua domain to UEV in the fused Kua–UEV protein confers new biological properties to this regulator of variant polyubiquitination.[Kua cDNAs isolated by RT-PCR and described in this paper have been deposited in the GenBank data library under accession nos. AF1155120 (H. sapiens) and AF152361 (D. melanogaster). Genomic clones containing UEV genes: S. cerevisiae, YGL087c (accession no. Z72609); S. pombe, c338 (accession no. AL023781); P. falciparum, MAL3P2 (accession no. AL034558); A. thaliana, F26F24 (accession no. AC005292); C. elegans, F39B2 (accession no. Z92834); D. melanogaster, AC014908; and H. sapiens, 1185N5 (accession no. AL034423). Accession numbers for Kua cDNAs in GenBank dbEST: M. musculus, AA7853; T. cruzi, AI612534. Other Kua-containing sequences: A. thaliana genomic clones F10M23 (accession no. AL035440), F19K23 (accession no. AC000375), and T20K9 (accession no. AC004786).
Resumo:
ß-catenin is a multifunctional protein involved in cell-cell adhesion and Wnt signal transduction. ß-Catenin signaling has been proposed to act as inducer of cell proliferation in different tumors. However, in some developmental contexts and cell systems ß-catenin also acts as a positive modulator of apoptosis. To get additional insights into the role of ß-Catenin in the regulation of the cell cycle and apoptosis, we have analyzed the levels and subcellular localization of endogenous ß-catenin and its relation with adenomatous polyposis coli (APC) during the cell cycle in S-phase¿synchronized epithelial cells. ß-Catenin levels increase in S phase, reaching maximum accumulation at late G2/M and then abruptly decreasing as the cells enter into a new G1 phase. In parallel, an increased cytoplasmic and nuclear localization of ß-catenin and APC is observed during S and G2 phases. In addition, strong colocalization of APC with centrosomes, but not ß-catenin, is detected in M phase. Interestingly, overexpression of a stable form of ß-catenin, or inhibition of endogenous ß-catenin degradation, in epidermal keratinocyte cells induces a G2 cell cycle arrest and leads to apoptosis. These results support a role for ß-catenin in the control of cell cycle and apoptosis at G2/M in normal and transformed epidermal keratinocytes.
Resumo:
Ran, the small, predominantly nuclear GTPase, has been implicated in the regulation of a variety of cellular processes including cell cycle progression, nuclear-cytoplasmic trafficking of RNA and protein, nuclear structure, and DNA synthesis. It is not known whether Ran functions directly in each process or whether many of its roles may be secondary to a direct role in only one, for example, nuclear protein import. To identify biochemical links between Ran and its functional target(s), we have generated and examined the properties of a putative Ran effector mutation, T42A-Ran. T42A-Ran binds guanine nucleotides as well as wild-type Ran and responds as well as wild-type Ran to GTP or GDP exchange stimulated by the Ran-specific guanine nucleotide exchange factor, RCC1. T42A-Ran·GDP also retains the ability to bind p10/NTF2, a component of the nuclear import pathway. In contrast to wild-type Ran, T42A-Ran·GTP binds very weakly or not detectably to three proposed Ran effectors, Ran-binding protein 1 (RanBP1), Ran-binding protein 2 (RanBP2, a nucleoporin), and karyopherin ß (a component of the nuclear protein import pathway), and is not stimulated to hydrolyze bound GTP by Ran GTPase-activating protein, RanGAP1. Also in contrast to wild-type Ran, T42A-Ran does not stimulate nuclear protein import in a digitonin permeabilized cell assay and also inhibits wild-type Ran function in this system. However, the T42A mutation does not block the docking of karyophilic substrates at the nuclear pore. These properties of T42A-Ran are consistent with its classification as an effector mutant and define the exposed region of Ran containing the mutation as a probable effector loop.
Resumo:
We propose a novel mechanism leading to spatiotemporal oscillations in extended systems that does not rely on local bulk instabilities. Instead, oscillations arise from the interaction of two subsystems of different spatial dimensionality. Specifically, we show that coupling a passive diffusive bulk of dimension d with an excitable membrane of dimension d-1 produces a self-sustained oscillatory behavior. An analytical explanation of the phenomenon is provided for d=1. Moreover, in-phase and antiphase synchronization of oscillations are found numerically in one and two dimensions. This novel dynamic instability could be used by biological systems such as cells, where the dynamics on the cellular membrane is necessarily different from that of the cytoplasmic bulk.
Resumo:
Spermiogenesis and the ultrastructure of the spermatozoon of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (Linnaeus, 1758), have been studied by means of transmission electron microscopy. Spermiogenesis involves firstly the formation of a differentiation zone. It is characterized by the presence of two centrioles associated with striated rootlets, an intercentriolar body and an electron-dense material in the apical region of this zone. Later, two flagella develop from the centrioles, growing orthogonally in relation to the median cytoplasmic process. Flagella then undergo a rotation of 90° until they become parallel to the median cytoplasmic process, followed by the proximodistal fusion of the flagella with the median cytoplasmic process. The nucleus elongates and afterwards it migrates along the spermatid body. Spermiogenesis finishes with the appearance of the apical cone surrounded by the single helical crested body at the base of the spermatid. Finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of C. crassiceps is filiform and contains two axonemes of the 9 + '1' trepaxonematan pattern, a parallel nucleus, parallel cortical microtubules, and electron-dense granules of glycogen. The anterior extremity of the gamete exhibits a short electron-dense apical cone and one crested body, which turns once around the sperm cell. The first axoneme is surrounded by a ring of thick cortical microtubules that persist until the appearance of the second axoneme. Later, these thick cortical microtubules disappear and thus, the mature spermatozoon exhibits two bundles of thin cortical microtubules. The posterior extremity of the male gamete presents only the nucleus. Results are discussed and compared particularly with the available ultrastructural data on the former 'pseudophyllideans'. Two differences can be established between spermatozoa of Bothriocephalidea and Diphyllobothriidea, the type of spermatozoon (II vs I) and the presence/absence of the ring of cortical microtubules.
Resumo:
Membrane-active antimicrobial peptides, such as polymyxin B (PxB), are currently in the spotlight as potential candidates toovercome bacterial resistance. We have designed synthetic analogs ofPxB in order to determine the structural requirements for membraneaction. Since the mechanism of action of PxB involves interaction withboth the outer membrane and the cytoplasmic membrane of Gramnegative bacteria, we have used an approach based on mimicking theouter layers of these membranes using monolayers, Langmuir-Blodgettfilms and unilamelar vesicles, and applying a battery of biophysicalmethods in order to dissect the different events of membraneinteraction. Collectively, results indicate that the PxB analogues act inthe bacterial membrane by the same mechanism than PxB, and that cationic amphipathicity determines peptide activity.
Resumo:
Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized γ-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.