15 resultados para cyclin dependent kinase Cdk1

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

P27(Kip1) (p27) is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Recently, a new function of p27 as transcriptional regulator has been reported. It has been shown that p27 regulates the expression of target genes mostly involved in splicing, cell cycle, respiration and translation. We report here that p27 directly binds to the transcriptional coactivator PCAF by a region including amino acids 91-120. PCAF associates with p27 through its catalytic domain and acetylates p27 at lysine 100. Our data showed that overexpression of PCAF induces the degradation of p27 whereas in contrast, the knockdown of PCAF stabilizes the protein. A p27 mutant in which K100 was substituted by arginine (p27-K100R) cannot be acetylated by PCAF and has a half-life much higher than that of p27WT. Moreover, p27-K100R remains stable along cell-cycle progression. Ubiquitylation assays and the use of proteasome inhibitors indicate that PCAF induces p27 degradation via proteasome. We also observed that knockdown of skp2 did not affect the PCAF induced degradation of p27. In conclusion, our data suggest that the p27 acetylation by PCAF regulates its stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G1 phase. Aberrant expression of CDK4 and CDK6 is a hall- mark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM is a potent specific inhibitor of CDK4 and CDK6 in HCT116 human colon adenocarcinoma cells, inhibiting retinoblastoma protein (pRb) phosphorylation and inducing cell cycle arrest in the G1 phase. The metabolic effects of calcein AM (the calcein acetoxymethyl-ester) on HCT116 cells were also evaluated and the flux between the oxidative and non-oxidative branches of the pentose phos-phate pathway was significantly altered. To elucidate whe-ther these metabolic changes were due to the inhibition of CDK4 and CDK6, we also characterized the metabolic profile of a CDK4, CDK6 and CDK2 triple knockout of mouse embryonic fibroblasts. The results show that the metabolic profile associated with the depletion of CDK4, CDK6 and CDK2 coincides with the metabolic changes induced by calcein AM on HCT116 cells, thus confirming that the inhibition of CDK4 and CDK6 disrupts the balance between the oxidative and non-oxidative branches of the pentose phosphate pathway. Taken together, these results indicate that low doses of calcein can halt cell division and kill tumor cells. Thus, selective inhibition of CDK4 and CDK6 may be of greater pharmacological interest, since inhibitors of these kinases affect both cell cycle progression and the robust metabolic profile of tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myc family members play crucial roles in regulating cell proliferation, size, and differentiation during organogenesis. Both N-myc and c-myc are expressed throughout inner ear development. To address their function in the mouse inner ear, we generated mice with conditional deletions in either N-myc or c-myc. Loss of c-myc in the inner ear causes no apparent defects, whereas inactivation of N-myc results in reduced growth caused by a lack of proliferation. Reciprocally, the misexpression of N-myc in the inner ear increases proliferation. Morphogenesis of the inner ear in N-myc mouse mutants is severely disturbed, including loss of the lateral canal, fusion of the cochlea with the sacculus and utriculus, and stunted outgrowth of the cochlea. Mutant cochleas are characterized by an increased number of cells exiting the cell cycle that express the cyclin-dependent kinase inhibitor p27Kip1 and lack cyclin D1, both of which control the postmitotic state of hair cells. Analysis of different molecular markers in N-myc mutant ears reveals the development of a rudimentary organ of Corti containing hair cells and the underlying supporting cells. Differentiated cells, however, fail to form the highly ordered structure characteristic for the organ of Corti but appear as rows or clusters with an excess number of hair cells. The Kölliker's organ, a transient structure neighboring the organ of Corti and a potential source of ectopic hair cells, is absent in the mutant ears. Collectively, our data suggest that N-myc regulates growth, morphogenesis, and pattern formation during the development of the inner ear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wnt factors regulate neural stem cell development and neuronal connectivity. Here we investigated whether Wnt-3a and Wnt-3, expressed in the developing spinal cord, regulate proliferation and the neuronal differentiation of spinal cord neural precursors (SCNP). Wnt-3a promoted a sustained increase of SCNP proliferation, whereas Wnt-3 enhanced SCNP proliferation transiently and increased neurogenesis through β-catenin signaling. Consistent with this, Wnt-3a and Wnt-3 differently regulate the expression of Cyclin-dependent kinase inhibitors. Furthermore, Wnt-3a and Wnt-3 stimulated neurite outgrowth in SCNP-derived neurons through ß-catenin and TCF4-dependent transcription. GSK-3ß inhibitors mimicked Wnt signaling and promoted neurite outgrowth in established cultures. We conclude that Wnt-3a and Wnt-3 signal through the canonical Wnt/β-catenin pathway to regulate different aspects of SCNP development. These findings may be of therapeutic interest for the treatment of neurodegenerative diseases and nerve injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin dependent kinases (cdks) regulate cell cycle progression and transcription. We report here that the transcriptional co-activator PCAF directly interacts with cdk2. This interaction is mainly produced during S and G2/M phases of the cell cycle. As a consequence of this association, PCAF inhibits the activity of cyclin/cdk2 complexes. This effect is specific for cdk2 because PCAF does not inhibit either cyclin D3/cdk6 or cyclin B/cdk1 activities. The inhibition is neither competitive with ATP, nor with the substrate histone H1 suggesting that somehow PCAF disturbs cyclin/cdk2 complexes. We also demonstrate that overexpression of PCAF in the cells inhibits cdk2 activity and arrests cell cycle progression at S and G2/M. This blockade is dependent on cdk2 because it is rescued by the simultaneous overexpression of this kinase. Moreover, we also observed that PCAF acetylates cdk2 at lysine 33. As this lysine is essential for the interaction with ATP, acetylation of this residue inhibits cdk2 activity. Thus, we report here that PCAF inhibits cyclin/cdk2 activity by two different mechanisms: (i) by somehow affecting cyclin/cdk2 interaction and (ii) by acetylating K33 at the catalytic pocket of cdk2. These findings identify a previously unknown mechanism that regulates cdk2 activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium signals trigger the translocation of the Prz1 transcription factor from the cytoplasm to the nucleus. The process is regulated by the calciumactivated phosphatase calcineurin, which activates Prz1 thereby maintaining active transcription during calcium signalling. When calcium signalling ceases, Prz1 is inactivated by phosphorylation and exported to the cytoplasm. In budding yeast and mammalian cells, different kinases have been reported to counter calcineurin activity and regulate nuclear export. Here, we show that the Ca2+/calmodulin-dependent kinase Cmk1 is first phosphorylated and activated by the newly identified kinase CaMKK2 homologue, Ckk2, in response to Ca2+. Then, active Cmk1 binds, phosphorylates and inactivates Prz1 transcription activity whilst at the same time cmk1 expression is enhanced by Prz1 in response to Ca2+. Furthermore, Cdc25 phosphatase is also phosphorylated by Cmk1, inducing cell cycle arrest in response to an increase in Ca2+. Moreover, cmk1 deletion shows a high tolerance to chronic exposure to Ca2+, due to the lack of cell cycle inhibition and elevated Prz1 activity. This work reveals that Cmk1 kinase activated by the newly identified Ckk2 counteracts calcineurin function by negatively regulating Prz1 activity which in turn is involved in activating cmk1 gene transcription. These results are the first insights into Cmk1 and Ckk2 function in Schizosaccharomyces pombe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Either calorie restriction, loss of function of the nutrient-dependent PKA or TOR/SCH9 pathways, or activation of stress defences improves longevity in different eukaryotes. However, the molecular links between glucose depletion, nutrient-dependent pathways and stress responses are unknown. Here we show that either calorie restriction or inactivation of nutrient-dependent pathways induces life-span extension in fission yeast, and that such effect is dependent on the activation of the stress-dependent Sty1 MAP kinase. During transition to stationary phase in glucose-limiting conditions, Sty1 becomes activated and triggers a transcriptional stress program, whereas such activation does not occur under glucose-rich conditions. Deletion of the genes coding for the SCH9-homologue Sck2 or the Pka1 kinases, or mutations leading to constitutive activation of the Sty1 stress pathway increase life span under glucose-rich conditions, and importantly such beneficial effects depend ultimately on Sty1. Furthermore, cells lacking Pka1 display enhanced oxygen consumption and Sty1 activation under glucose-rich conditions. We conclude that calorie restriction favours oxidative metabolism, reactive oxygen species production and Sty1 MAP kinase activation, and this stress pathway favours life-span extension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ras proteins are small guanosine triphosphatases involved in the regulation of important cellular functions such as proliferation, differentiation, and apoptosis. Understanding the intracellular trafficking of Ras proteins is crucial to identify novel Ras signaling platforms. In this study, we report that epidermal growth factor triggers Kirsten Ras (KRas) translocation onto endosomal membranes (independently of calmodulin and protein kinase C phosphorylation) through a clathrin-dependent pathway. From early endosomes, KRas but not Harvey Ras or neuroblastoma Ras is sorted and transported to late endosomes (LEs) and lysosomes. Using yellow fluorescent protein¿Raf1 and the Raichu-KRas probe, we identified for the first time in vivo¿active KRas on Rab7 LEs, eliciting a signal output through Raf1. On these LEs, we also identified the p14¿MP1 scaffolding complex and activated extracellular signal-regulated kinase 1/2. Abrogation of lysosomal function leads to a sustained late endosomal mitogen-activated protein kinase signal output. Altogether, this study reveals novel aspects about KRas intracellular trafficking and signaling, shedding new light on the mechanisms controlling Ras regulation in the cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that oval cells harboring a genetically inactivated Met tyrosine kinase (Met−/− oval cells) are more sensitive to TGF-β-induced apoptosis than cells expressing a functional Met (Metflx/flx), demonstrating that the HGF/Met axis plays a pivotal role in oval cell survival. Here, we have examined the mechanism behind this effect and have found that TGF-β induced a mitochondria-dependent apoptotic cell death in Metflx/flx and Met−/− oval cells, associated with a marked increase in levels of the BH3-only proteins Bim and Bmf. Bmf plays a key role during TGF-β-mediated apoptosis since knocking down of BMF significantly diminished the apoptotic response in Met-/- oval cells. TGF-β also induced oxidative stress accompanied by NADPH oxidase 4 (Nox4) mRNA up-regulation and decreased protein levels of antioxidant enzymes. Antioxidants inhibit both TGF-β-induced caspase 3 activity and Bmf up-regulation, revealing an oxidative stress-dependent Bmf regulation by TGF-β. Notably, oxidative stress-related events were strongly amplified in Met−/− oval cells, emphasizing the critical role of Met in promoting survival. Pharmacological inhibition of PI3K did impair HGF-driven protection from TGF-β-induced apoptosis and increased sensitivity of Metflx/flx oval cells to TGF-ß by enhancing oxidative stress, reaching apoptotic indices similar to those obtained in Met−/− oval cells. Interestingly, both PI3K inhibition and/or knockdown itself resulted in caspase-3 activation and loss of viability in Metflx/flx oval cells, whereas no effect was observed in Met−/− oval cells. Altogether, results presented here provide solid evidences that both paracrine and autocrine HGF/Met signaling requires PI3K to promote mouse hepatic oval cell survival against TGF-β-induced oxidative stress and apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4 (HNF-4 ) as a novel regulator of human apoAV gene. Inhibition of HNF-4 expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4 directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4 consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor- coactivator-1 was capable of stimulating the HNF-4 -dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4 . Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4 gene revealed a species-distinct regulation of apoAV by HNF-4 , which resembles that of a subset of HNF-4 target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4 and underscore the role of HNF-4 in regulating triglyceride metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondrial trafficking deficits have been implicated in the pathogenesis of several neurological diseases, including Alzheimer's disease (AD). The Ser/Thre kinase GSK3β is believed to play a fundamental role in AD pathogenesis. Given that GSK3β substrates include Tau protein, here we studied the impact of GSK3β on mitochondrial trafficking and its dependence on Tau protein. Overexpression of GSK3β in neurons resulted in an increase in motile mitochondria, whereas a decrease in the activity of this kinase produced an increase in mitochondria pausing. These effects were dependent on Tau proteins, as Tau (−/−) neurons did not respond to distinct GSK3β levels. Furthermore, differences in GSK3β expression did not affect other parameters like mitochondria velocity or mitochondria run length. We conclude that GSK3B activity regulates mitochondrial axonal trafficking largely in a Tau-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Class IIa histone deacetylases (HDAC)4 and HDAC5 play a role in neuronal survival and behavioral adaptation in the CNS. Phosphorylation at 2/3 N-terminal sites promote their nuclear export. We investigated whether non-canonical signaling routes to Class IIa HDAC export exist because of their association with the co-repressor Silencing Mediator Of Retinoic And Thyroid Hormone Receptors (SMRT). We found that, while HDAC5 and HDAC4 mutants lacking their N-terminal phosphorylation sites (HDAC4(MUT), HDAC5(MUT)) are constitutively nuclear, co-expression with SMRT renders them exportable by signals that trigger SMRT export, such as synaptic activity, HDAC inhibition, and Brain Derived Neurotrophic Factor (BDNF) signaling. We found that SMRT's repression domain 3 (RD3) is critical for co-shuttling of HDAC5(MUT), consistent with the role for this domain in Class IIa HDAC association. In the context of BDNF signaling, we found that HDAC5(WT), which was more cytoplasmic than HDAC5(MUT), accumulated in the nucleus after BDNF treatment. However, co-expression of SMRT blocked BDNF-induced HDAC5(WT) import in a RD3-dependent manner. In effect, SMRT-mediated HDAC5(WT) export was opposing the BDNF-induced HDAC5 nuclear accumulation observed in SMRT's absence. Thus, SMRT's presence may render Class IIa HDACs exportable by a wider range of signals than those which simply

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.