3 resultados para constitutive model

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant’s Crack Band Model. To verify the accuracy of the approach, analyses ofcoupon specimens were performed, and the numerical predictions were compared with experimental data

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics. The constitutive equation that results from the definition of the free energy as a function of a damage variable is used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation proposed accounts for crack closure effets avoiding interfacial penetration of two adjacent layers aftercomplete decohesion. The model is implemented in a finite element formulation. The numerical predictions given by the model are compared with experimental results