21 resultados para concave refractive microlens array
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Projecte de recerca elaborat a partir d’una estada al Department for Feed and Food Hygiene del National Veterinary Institute, Noruega, entre novembre i desembre del 2006. Els grans de cereal poden estar contaminats amb diferents espècies de Fusarium capaces de produir metabolits secundaris altament tòxics com trichotecenes, fumonisines o moniliformines. La correcta identificació d’aquestes espècies és de gran importància per l’assegurament del risc en l’àmbit de la salut humana i animal. La identificació de Fusarium en base a la seva morfologia requereix coneixements taxonòmics i temps; la majoria dels mètodes moleculars permeten la identificació d’una única espècie diana. Per contra, la tecnologia de microarray ofereix l’anàlisi paral•lel d’un alt nombre de DNA dianes. En aquest treball, s’ha desenvolupat un array per a la identificació de les principals espècies de Fusarium toxigèniques del Nord i Sud d’Europa. S’ha ampliat un array ja existent, per a la detecció de les espècies de Fusarium productores de trichothecene i moniliformina (predominants al Nord d’Europa), amb l’addició de 18 sondes de DNA que permeten identificar les espècies toxigèniques més abundants al Sud d’Europa, les qual produeixen majoritàriament fumonisines. Les sondes de captura han estat dissenyades en base al factor d’elongació translació- 1 alpha (TEF-1alpha). L’anàlisi de les mostres es realitza mitjançant una única PCR que permet amplificar part del TEF-1alpha seguida de la hibridació al xip de Fusarium. Els resultats es visualitzen mitjançant un mètode de detecció colorimètric. El xip de Fusarium desenvolupat pot esdevenir una eina útil i de gran interès per a l’anàlisi de cereals presents en la cadena alimentària.
Resumo:
Aquest projecte es centra en el disseny d’una antena microstrip per a GNSS. Una antena per a GNSS ha de tenir adaptació de impedància d’entrada i polarització circular a dretes, com a principals especificacions, en el rang de 1.15-1.6 GHz. El tipus d’alimentació d’una antena microstrip amb el major ample de banda d’adaptació és l’alimentació mitjançant acoblament per apertura. Si a l’antena s’introdueixen dos apertures de forma ortogonal, alimentades amb un desfasament de 90º entre elles, s’aconsegueix polarització circular. L’opció de separar les apertures redueix la transferència de potència entre elles, i disminueix el guany de polarització creuada. La xarxa d’alimentació dissenyada és un divisor de Wilkinson amb una línia de λ/4 a la freqüència central, encara que el desfasament als extrems de la banda no sigui de 90º. Com a xarxa d’alimentació es va provar un hibrid de 90º, però l’elevat valor del paràmetre S21 de l’antena impossibilita l’adaptació a l’entrada del hibrid.
Resumo:
Background: Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results: Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion:This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
The network choice revenue management problem models customers as choosing from an offer-set, andthe firm decides the best subset to offer at any given moment to maximize expected revenue. The resultingdynamic program for the firm is intractable and approximated by a deterministic linear programcalled the CDLP which has an exponential number of columns. However, under the choice-set paradigmwhen the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has beenproposed but finding an entering column has been shown to be NP-hard. In this paper, starting with aconcave program formulation based on segment-level consideration sets called SDCP, we add a class ofconstraints called product constraints, that project onto subsets of intersections. In addition we proposea natural direct tightening of the SDCP called ?SDCP, and compare the performance of both methodson the benchmark data sets in the literature. Both the product constraints and the ?SDCP method arevery simple and easy to implement and are applicable to the case of overlapping segment considerationsets. In our computational testing on the benchmark data sets in the literature, SDCP with productconstraints achieves the CDLP value at a fraction of the CPU time taken by column generation and webelieve is a very promising approach for quickly approximating CDLP when segment consideration setsoverlap and the consideration sets themselves are relatively small.
Resumo:
Two-dimensional aperture synthesis radiometry is the technologyselected for ESA's SMOS mission to provide high resolution L-bandradiometric imagery. The array topology is a Y-shaped structure. Theposition and number of redundant elements to minimise instrumentdegradation in case of element failure(s) are studied.
Resumo:
Background: Kabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown. Methods: We have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited. Results: No duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group. Conclusion: Our results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered.
Resumo:
Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g.,rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperaturedependent viscosity. Results show that average RMS errors are ∼5%–7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ∼10°C–15°C effluent reach ∼5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2‐D flows where background objects have a small spatial scale, such as sand or gravel
Resumo:
he complex refractive index of SiO2 layers containing Si nanoclusters (Si-nc) has been measured by spectroscopic ellipsometry in the range from 1.5 to 5.0 eV. It has been correlated with the amount of Si excess accurately measured by x-ray photoelectron spectroscopy and the nanocluster size determined by energy-filtered transmission electron microscopy. The Si-nc embedded in SiO2 have been produced by a fourfold Si+ ion implantation, providing uniform Si excess aimed at a reliable ellipsometric modeling. The complex refractive index of the Si-nc phase has been calculated by the application of the Bruggeman effective-medium approximation to the composite media. The characteristic resonances of the refractive index and extinction coefficient of bulk Si vanish out in Si-nc. In agreement with theoretical simulations, a significant reduction of the refractive index of Si-nc is observed, in comparison with bulk and amorphous silicon. The knowledge of the optical properties of these composite layers is crucial for the realization of Si-based waveguides and light-emitting devices.
Resumo:
A bidimensional array based on single-photon avalanche diodes for triggered imaging systems is presented. The diodes are operated in the gated mode of acquisition to reduce the probability to detect noise counts interfering with photon arrival events. In addition, low reverse bias overvoltages are used to lessen the dark count rate. Experimental results demonstrate that the prototype fabricated with a standard HV-CMOS process gets rid of afterpulses and offers a reduced dark count probability by applying the proposed modes of operation. The detector exhibits a dynamic range of 15 bits with short gated"on" periods of 10ns and a reverse bias overvoltage of 1.0V.
Resumo:
Low-cost tin oxide gas sensors are inherently nonspecific. In addition, they have several undesirable characteristics such as slow response, nonlinearities, and long-term drifts. This paper shows that the combination of a gas-sensor array together with self-organizing maps (SOM's) permit success in gas classification problems. The system is able to determine the gas present in an atmosphere with error rates lower than 3%. Correction of the sensor's drift with an adaptive SOM has also been investigated
Resumo:
Drift is an important issue that impairs the reliability of gas sensing systems. Sensor aging, memory effects and environmental disturbances produce shifts in sensor responses that make initial statistical models for gas or odor recognition useless after a relatively short period (typically few weeks). Frequent recalibrations are needed to preserve system accuracy. However, when recalibrations involve numerous samples they become expensive and laborious. An interesting and lower cost alternative is drift counteraction by signal processing techniques. Orthogonal Signal Correction (OSC) is proposed for drift compensation in chemical sensor arrays. The performance of OSC is also compared with Component Correction (CC). A simple classification algorithm has been employed for assessing the performance of the algorithms on a dataset composed by measurements of three analytes using an array of seventeen conductive polymer gas sensors over a ten month period.
Resumo:
A new drift compensation method based on Common Principal Component Analysis (CPCA) is proposed. The drift variance in data is found as the principal components computed by CPCA. This method finds components that are common for all gasses in feature space. The method is compared in classification task with respect to the other approaches published where the drift direction is estimated through a Principal Component Analysis (PCA) of a reference gas. The proposed new method ¿ employing no specific reference gas, but information from all gases ¿has shown the same performance as the traditional approach with the best-fitted reference gas. Results are shown with data lasting 7-months including three gases at different concentrations for an array of 17 polymeric sensors.
Resumo:
Two-sided flux decoration experiments indicate that threading dislocation lines (TDLs), which cross the entire film, are sometimes trapped in metastable states. We calculate the elastic energy associated with the meanderings of a TDL. The TDL behaves as an anisotropic and dispersive string with thermal fluctuations largely along its Burgers vector. These fluctuations also modify the structure factor of the vortex solid. Both effects can, in principle, be used to estimate the elastic moduli of the material.