42 resultados para cerebral imaging
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this project, we have investigated new ways of modelling and analysis of human vasculature from Medical images. The research was divided in two main areas: cerebral vasculature analysis and coronary arteries modeling. Regarding cerebral vasculature analysis, we have studed cerebral aneurysms, internal carotid and the Circle of Willis (CoW). Aneurysms are abnormal vessel enlargements that can rupture causing important cerebral damages or death. The understanding of this pathology, together with its virtual treatment, and image diagnosis and prognosis, includes identification and detailed measurement of the aneurysms. In this context, we have proposed two automatic aneurysm isolation method, to separate the abnormal part of the vessel from the healthy part, to homogenize and speed-up the processing pipeline usually employed to study this pathology, [Cardenes2011TMI, arrabide2011MedPhys]. The results obtained from both methods have been also compared and validatied in [Cardenes2012MBEC]. A second important task here the analysis of the internal carotid [Bogunovic2011Media] and the automatic labelling of the CoW, Bogunovic2011MICCAI, Bogunovic2012TMI]. The second area of research covers the study of coronary arteries, specially coronary bifurcations because there is where the formation of atherosclerotic plaque is more common, and where the intervention is more challenging. Therefore, we proposed a novel modelling method from Computed Tomography Angiography (CTA) images, combined with Conventional Coronary Angiography (CCA), to obtain realistic vascular models of coronary bifurcations, presented in [Cardenes2011MICCAI], and fully validated including phantom experiments in [Cardene2013MedPhys]. The realistic models obtained from this method are being used to simulate stenting procedures, and to investigate the hemodynamic variables in coronary bifurcations in the works submitted in [Morlachi2012, Chiastra2012]. Additionally, another preliminary work has been done to reconstruct the coronary tree from rotational angiography, and published in [Cardenes2012ISBI].
Resumo:
Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D X-ray reconstruc-tion angiography (3DRA) and time of °ight magnetic resonance angiography (TOF-MRA) images available in the clinical routine.Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA and TOF-MRA. Images were obtained from two clinical centers, each using di®erent imaging equipment. Evaluation included qualitative and quantitative analyses ofthe segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: iso-intensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an inter-modality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE di®ered from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE, respectively) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatabilityof GAR was superior to manual measurements and ISE. The inter-modality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.
Resumo:
This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.
Resumo:
Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.
Resumo:
Background: The rate of recovery from the vegetative state (VS) is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results: fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions: These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.
Resumo:
Background: The rate of recovery from the vegetative state (VS) is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results: fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions: These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.
Resumo:
Background: The rate of recovery from the vegetative state (VS) is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results: fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions: These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.
Resumo:
The 1st chapter of this work presents the different experiments and collaborations in which I am involved during my PhD studies of Physics. Following those descriptions, the 2nd chapter is dedicated to how the radiation affects the silicon sensors, as well as some experimental measurements carried out at CERN (Geneve, Schwitzerland) and IFIC (Valencia, Spain) laboratories. Besides the previous investigation results, this chapter includes the most recent scientific papers appeared in the latest RD50 (Research & Development #50) Status Report, published in January 2007, as well as some others published this year. The 3rd and 4th are dedicated to the simulation of the electrical behavior of solid state detectors. In chapter 3 are reported the results obtained for the illumination of edgeless detectors irradiated at different fluences, in the framework of the TOSTER Collaboration. The 4th chapter reports about simulation design, simulation and fabrication of a novel 3D detector developed at CNM for ions detection in the future ITER fusion reactor. This chapter will be extended with irradiation simulations and experimental measurements in my PhD Thesis.
Resumo:
Resumen: La incontinencia fecal es una patología con importantes implicaciones sociosanitarias, con un tratamiento complejo y no siempre satisfactorio, especialmente la incontinencia fecal idiopática. El sistema nervioso central regula los procesos de continencia y defecación. Los estudios de neuroimagen han demostrado ser útiles para caracterizar las áreas cerebrales que controlan el área anorrectal. A partir de un grupo de voluntarias sanas, se ha creado un modelo de caracterización de estas áreas cerebrales anorrectales, que podrá ser utilizado posteriormente para compararlo con un grupo de pacientes con incontinencia fecal idiopática, estudiando posibles diferencias y posibles opciones terapéuticas.
Resumo:
La Rapid Arterial oCclusion Evaluation és una escala neurològica prehospitalària que prediu la presència d’una oclusió arterial proximal (OAP) en els pacients amb un ictus isquèmic agut de la circulació cerebral anterior (IIACCA). Fou dissenyada valorant retrospectivament a 654 pacients amb un IIACCA, seleccionant la combinació dels ítems de la National Institutes of Health Stroke Scale que mostraven una major associació amb la presència d’una OAP: parèsia facial, parèsia braquial, parèsia crural, desviació oculocefàlica y agnòsia/afàsia. Fou validada valorant prospectivament a 93 activacions del Codi Ictus, mostrant una sensibilitat del 88% y una especificitat del 65% per una puntuació ≥ 4.
Resumo:
La microdiàlisi és una tècnica de neuromonitoratge que permet el mostreig continu del contingut molecular i iònic de l’espai intersticial cerebral. Aquesta tècnica es basa en la implantació d’un catèter en el parènquima cerebral humà de manera mínimament invasiva. Actualment, la microdiàlisi s’ha implantat de manera rutinària en moltes unitats de cures intensives pel neuromonitoratge de pacients amb lesions cerebrals agudes. No obstant, l’estudi in vivo del perfil temporal del proteoma en aquestes lesions i la correcta avaluació de la concentració de les molècules d’interès en el líquid extracel•lular cerebral requereix la determinació prèvia in vitro del percentatge de recuperació relativa de les proteïnes d’estudi.
Resumo:
Estudi prospectiu en 41 pacients amb ictus agut mitjançant poligrafia respiratòria i repetició als 3 mesos (29) per avaluar el paper de la SAHS en l’ictus agut i la relació amb les CPEs. En fase estable va disminuir significativament l’IAH total i la prevalença de SAHS greu, sense relació amb el pronòstic. L’estudi de la SAHS en l’ictus agut pot sobreestimar la prevalença de SAHS greu, dada rellevant front la decisió d’iniciar tractament amb CPAP. Les CPEs mostren un pic als 7 dies post-ictus i els pacients SAHS presenten uns valors basals menors, possible reflex de la seva disfunció endotelial.
Resumo:
L’ictus és un dels reptes sanitaris més importants al nostre país ja que l’únic tractament disponible és l’administració de trombolítics durant les 4,5 primeres hores i menys d’un 10% dels pacients poden beneficiar-se’n. Publicacions anteriors han demostrat que el tractament de l’ictus amb estatines pot reduir l’extensió del teixit infartat i millorar la funció neurològica, per això proposem fer un estudi experimental usant un model d’isquèmia en rata, que evidenciï si el tractament combinat de Simvastatina i rt-PA incrementa el benefici obtingut únicament amb fàrmacs trombolítics i avaluï la seva seguretat quan s’administra durant la fase aguda (transformacions hemorràgiques i incidència d’infeccions).
Resumo:
Es recullen les dades dels pacients amb ictus agut (isquèmic i hemorràgic) que ingressen al nostre servei i es comparen les dades epidemiològiques, clíniques i de pronòstic de dones i homes. En l'anàlisi comparatiu s’objectiven diferències en quant als factors de risc entre ambdós sexes. I es troben factors independents de mal pronòstic en els pacients amb un ictus isquèmic: l'antecedent de cardiopatia isquèmica, l’escala de rankin previ i l'escala canadenca a l'ingrés. En l'anàlisi de regressió logística es troben factors independents de mal pronòstic en els pacients amb una hemorràgia cerebral l'edat i l'escala canadenca a l'ingrés.