10 resultados para canonical analysis
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The use of simple and multiple correspondence analysis is well-established in socialscience research for understanding relationships between two or more categorical variables.By contrast, canonical correspondence analysis, which is a correspondence analysis with linearrestrictions on the solution, has become one of the most popular multivariate techniques inecological research. Multivariate ecological data typically consist of frequencies of observedspecies across a set of sampling locations, as well as a set of observed environmental variablesat the same locations. In this context the principal dimensions of the biological variables aresought in a space that is constrained to be related to the environmental variables. Thisrestricted form of correspondence analysis has many uses in social science research as well,as is demonstrated in this paper. We first illustrate the result that canonical correspondenceanalysis of an indicator matrix, restricted to be related an external categorical variable, reducesto a simple correspondence analysis of a set of concatenated (or stacked ) tables. Then weshow how canonical correspondence analysis can be used to focus on, or partial out, aparticular set of response categories in sample survey data. For example, the method can beused to partial out the influence of missing responses, which usually dominate the results of amultiple correspondence analysis.
Resumo:
A Method is offered that makes it possible to apply generalized canonicalcorrelations analysis (CANCOR) to two or more matrices of different row and column order. The new method optimizes the generalized canonical correlationanalysis objective by considering only the observed values. This is achieved byemploying selection matrices. We present and discuss fit measures to assessthe quality of the solutions. In a simulation study we assess the performance of our new method and compare it to an existing procedure called GENCOM,proposed by Green and Carroll. We find that our new method outperforms the GENCOM algorithm both with respect to model fit and recovery of the truestructure. Moreover, as our new method does not require any type of iteration itis easier to implement and requires less computation. We illustrate the methodby means of an example concerning the relative positions of the political parties inthe Netherlands based on provincial data.
Resumo:
The application of Discriminant function analysis (DFA) is not a new idea in the studyof tephrochrology. In this paper, DFA is applied to compositional datasets of twodifferent types of tephras from Mountain Ruapehu in New Zealand and MountainRainier in USA. The canonical variables from the analysis are further investigated witha statistical methodology of change-point problems in order to gain a betterunderstanding of the change in compositional pattern over time. Finally, a special caseof segmented regression has been proposed to model both the time of change and thechange in pattern. This model can be used to estimate the age for the unknown tephrasusing Bayesian statistical calibration
Resumo:
Correspondence analysis, when used to visualize relationships in a table of counts(for example, abundance data in ecology), has been frequently criticized as being too sensitiveto objects (for example, species) that occur with very low frequency or in very few samples. Inthis statistical report we show that this criticism is generally unfounded. We demonstrate this inseveral data sets by calculating the actual contributions of rare objects to the results ofcorrespondence analysis and canonical correspondence analysis, both to the determination ofthe principal axes and to the chi-square distance. It is a fact that rare objects are oftenpositioned as outliers in correspondence analysis maps, which gives the impression that theyare highly influential, but their low weight offsets their distant positions and reduces their effecton the results. An alternative scaling of the correspondence analysis solution, the contributionbiplot, is proposed as a way of mapping the results in order to avoid the problem of outlying andlow contributing rare objects.
Resumo:
Although correspondence analysis is now widely available in statistical software packages and applied in a variety of contexts, notably the social and environmental sciences, there are still some misconceptions about this method as well as unresolved issues which remain controversial to this day. In this paper we hope to settle these matters, namely (i) the way CA measures variance in a two-way table and how to compare variances between tables of different sizes, (ii) the influence, or rather lack of influence, of outliers in the usual CA maps, (iii) the scaling issue and the biplot interpretation of maps,(iv) whether or not to rotate a solution, and (v) statistical significance of results.
Resumo:
We show the equivalence between the use of correspondence analysis (CA)of concadenated tables and the application of a particular version ofconjoint analysis called categorical conjoint measurement (CCM). Theconnection is established using canonical correlation (CC). The second part introduces the interaction e¤ects in all three variants of theanalysis and shows how to pass between the results of each analysis.
Resumo:
We characterize the Schatten class membership of the canonical solution operator to $\overline{\partial}$ acting on $L^2(e^{-2\phi})$, where $\phi$ is a subharmonic function with $\Delta\phi$ a doubling measure. The obtained characterization is in terms of $\Delta\phi$. As part of our approach, we study Hankel operators with anti-analytic symbols acting on the corresponding Fock space of entire functions in $L^2(e^{-2\phi})$
Resumo:
In this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs. pH curves at different background salt concentrations. As the charge of the titrated surface changes during the simulation, a procedure to keep the electroneutrality of the system is required. Here, two approaches are used with the choice depending on the ion selected to maintain electroneutrality: counterion or coion procedures. We compare and discuss the difference between the procedures. The simulations also provided a microscopic description of the electrostatic double layer (EDL) structure as a function of p H and ionic strength. The results allow us to quantify the effect of the size of the background salt ions and of the surface functional groups on the degree of dissociation. The non-homogeneous structure of the EDL was revealed by plotting the counterion density profiles around charged and neutral surface functional groups.
Resumo:
It is well known the relationship between source separation and blind deconvolution: If a filtered version of an unknown i.i.d. signal is observed, temporal independence between samples can be used to retrieve the original signal, in the same manner as spatial independence is used for source separation. In this paper we propose the use of a Genetic Algorithm (GA) to blindly invert linear channels. The use of GA is justified in the case of small number of samples, where other gradient-like methods fails because of poor estimation of statistics.
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.