3 resultados para butterfly moths
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the"female calling plus male seduction" system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Methodology/Principal Findings: Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. Conclusions/Significance: This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.
Resumo:
Studies were conducted in apple, Malus domestica Borkhausen and pear, Pyrus communis L. (Rosales: Rosaceae), orchards to evaluate the attractiveness of grey halobutyl septa loaded with 1 (L2) and 10 (Mega) mg of codlemone, 8E,10E-dodecadien-1-ol, 3 mg of pear ester, ethyl (E,Z)- 2,4-decadienoate (DA2313), and 3 mg of pear ester plus 3 mg of codlemone (Combo) to adult codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). All studies were conducted in orchards treated with pheromone mating disruption. All four lures were tested on diamond-shaped sticky traps placed in 60 plots of apple and 40 plots of pears in 2003/04, and in 62 plots of apples and 30 of pears in 2004-05. Combo lures attracted significantly more moths (males + females) than all the others in both years. Comparisons among flights showed significant differences mainly for flight 1 and 2, but not always for flight 3. Mega lures provided no significant improvement compared with L2 lures during both seasons regarding the total number of moths. Combo and DA2313 lures attracted fewer females than males during the whole season. For most sample dates, more virgin than mated females were attracted to Combo lures, except during the third flight, and the overall ratio was 60:40, although the difference was not statistically significant. We conclude that the Combo lures are better indicators of codling moth activity in pheromone treated orchards, regardless of pest population level, when compared with similar lures containing codlemone or pear ester alone.
Resumo:
A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based on more complex random walks than those in previous approaches. The new model is developed analytically up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better than existing models. The predicted dependence for the speed on the number of generations per year allows us to explain the change in speed observed for a specific invasion