2 resultados para biotypes

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whiteflies and whitefly-transmitted viruses are some of the major constraints on European tomato production. The main objectives of this study were to: identify where and why whiteflies are a major limitation on tomato crops; collect information about whiteflies and associated viruses; determine the available management tools; and identify key knowledge gaps and research priorities. This study was conducted within the framework of ENDURE (European Network for Durable Exploitation of Crop Protection Strategies). Two whitefly species are the main pests of tomato in Europe: Bemisia tabaci and Trialeurodes vaporariorum. Trialeurodes vaporariorum is widespread to all areas where greenhouse industry is present, and B. tabaci has invaded, since the early 1990’s, all the subtropical and tropical areas. Biotypes B and Q of B. tabaci are widespread and especially problematic. Other key tomato pests are Aculops lycopersici, Helicoverpa armigera, Frankliniella occidentalis, and leaf miners. Tomato crops are particularly susceptible to viruses causingTomato yellow leaf curl disease (TYLCD). High incidences of this disease are associated to high pressure of its vector, B. tabaci. The ranked importance of B. tabaci established in this study correlates with the levels of insecticide use, showing B. tabaci as one of the principal drivers behind chemical control. Confirmed cases of resistance to almost all insecticides have been reported. Integrated Pest Management based on biological control (IPM-BC) is applied in all the surveyed regions and identified as the strategy using fewer insecticides. Other IPM components include greenhouse netting and TYLCD-tolerant tomato cultivars. Sampling techniques differ between regions, where decisions are generally based upon whitefly densities and do not relate to control strategies or growing cycles. For population monitoring and control, whitefly species are always identified. In Europe IPM-BC is the recommended strategy for a sustainable tomato production. The IPM-BC approach is mainly based on inoculative releases of the parasitoids Eretmocerus mundus and Encarsia formosa and/or the polyphagous predators Macrolophus caliginosus and Nesidiocoris tenuis. However, some limitations for a wider implementation have been identified: lack of biological solutions for some pests, costs of beneficials, low farmer confidence, costs of technical advice, and low pest injury thresholds. Research priorities to promote and improve IPM-BC are proposed on the following domains: (i) emergence and invasion of new whitefly-transmitted viruses; (ii) relevance of B. tabaci biotypes regarding insecticide resistance; (iii) biochemistry and genetics of plant resistance; (iv) economic thresholds and sampling techniques of whiteflies for decision making; and (v) conservation and management of native whitefly natural enemies and improvement of biological control of other tomato pests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Models of the maintenance of sex predict that one reproductive strategy, sexual or parthenogenetic, should outcompete the other. Distribution patterns may reflect the outcome of this competition as well as the effect of chance and historical events. We review the distribution data of sexual and parthenogenetic biotypes of the planarian Schmidtea polychroa. Results: S. polychroa lives in allopatry or sympatry across Europe except for Central and North-Western Europe, where sexual individuals have never been reported. A phylogenetic relationship between 36 populations based on a 385 bp fragment of the mitochondrial cytochrome oxidase I gene revealed that haplotypes were often similar over large geographic distances. In North Italian lakes, however, diversity was extreme, with sequence differences of up to 5% within the same lake in both sexuals and parthenogens. Mixed populations showed "endemic" parthenogenetic lineages that presumably originated from coexisting sexuals, and distantly related ones that probably result from colonization by parthenogens independent from sexuals. Conclusions: Parthenogens originated repeatedly from sexuals, mainly in Italy, but the same may apply to other Mediterranean regions (Spain, Greece). The degree of divergence between populations suggests that S. polychroa survived the ice ages in separate ice-free areas in Central, Eastern and Southern Europe and re-colonised Europe after the retreat of the major glaciers. Combining these results with those based on nuclear markers, the data suggest that repeated hybridisation between sexuals and parthenogenetic lineages in mixed populations maintains high levels of genetic diversity in parthenogens. This can explain why parthenogens persist in populations that were originally sexual. Exclusive parthenogenesis in central and western populations suggests better colonisation capacity, possibly because of inbreeding costs as well