5 resultados para biosolids and nitrogen
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Cessation of traditional management threatens semi-natural grassland diversity through the colonisation or increase of competitive species adapted to nutrient-poor conditions. Regular mowing is one practice that controls their abundance. This study evaluated the ecophysiological mechanisms limiting short- and long-term recovery after mowing for Festuca paniculata, a competitive grass that takes over subalpine grasslands in the Alps following cessation of mowing. We quantified temporal variations in carbon (C) and nitrogen (N) content, starch, fructan and total soluble sugars in leaves, stem bases and roots of F. paniculata during one growth cycle in mown and unmown fields and related them to the dynamics of soil mineral N concentration and soil moisture. Short-term results suggest that the regrowth of F. paniculata following mowing might be N-limited, first because of N dilution by C increments in the plant tissue, and second, due to low soil mineral N and soil moisture at this time of year. However, despite short-term effects of mowing on plant growth, C and N content and concentration at the beginning of the following growing season were not affected. Nevertheless, total biomass accumulation at peak standing biomass was largely reduced compared to unmown fields. Moreover, lower C storage capacity at the end of the growing season impacted C allocation to vegetative reproduction during winter, thereby dramatically limiting the horizontal growth of F. paniculata tussocks in the long term. We conclude that mowing reduces the growth of F. paniculata tussocks through both C and N limitation. Such results will help understanding how plant responses to defoliation regulate competitive interactions within plant communities.
Resumo:
Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH4NO3) and high (HN, 15 mm NH4NO3) N conditions. We conducted simultaneous double labelling (12CO2 and 15NH415NO3) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUEtotal), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post-anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the"waste" of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value.
Resumo:
Cessation of traditional management threatens semi-natural grassland diversity through the colonisation or increase of competitive species adapted to nutrient-poor conditions. Regular mowing is one practice that controls their abundance. This study evaluated the ecophysiological mechanisms limiting short- and long-term recovery after mowing for Festuca paniculata, a competitive grass that takes over subalpine grasslands in the Alps following cessation of mowing. We quantified temporal variations in carbon (C) and nitrogen (N) content, starch, fructan and total soluble sugars in leaves, stem bases and roots of F. paniculata during one growth cycle in mown and unmown fields and related them to the dynamics of soil mineral N concentration and soil moisture. Short-term results suggest that the regrowth of F. paniculata following mowing might be N-limited, first because of N dilution by C increments in the plant tissue, and second, due to low soil mineral N and soil moisture at this time of year. However, despite short-term effects of mowing on plant growth, C and N content and concentration at the beginning of the following growing season were not affected. Nevertheless, total biomass accumulation at peak standing biomass was largely reduced compared to unmown fields. Moreover, lower C storage capacity at the end of the growing season impacted C allocation to vegetative reproduction during winter, thereby dramatically limiting the horizontal growth of F. paniculata tussocks in the long term. We conclude that mowing reduces the growth of F. paniculata tussocks through both C and N limitation. Such results will help understanding how plant responses to defoliation regulate competitive interactions within plant communities.
Resumo:
The impact, on nitrogen and phosphorous dynamics, of applying compost at different rates was investigated in soils developed on schist in new terraced vineyards (NTV) and in undisturbed areas (NC). Repacked soil columns amended with 0 (control), 50 t ha –1 (T1) and 100 t ha–1 (T2) of compost were studied under laboratory conditions simulating both situations. The columns were maintained for 1 year, during which time a total of 300 mm of simulated rainfall was applied in ten 30 mm applications. Soil organic matter (OM), nitrogen and phosphorous contents were analysed at the end of the study period and leachates were analysed after each simulated rainfall event. Significant differences in nitrate leaching were observed between the control and the treated soils and these differences were greater in the NC (control = 1.368 g, T1 = 1.526 g and T2 = 1.686 g) than in the NTV soils (control = 0.61 g, T1 = = 1.068 g and T2 = 1.283 g). The relative effect was greater in the NTV soils (T1/control = 1.11 vs. 1.75 and T2/control = 1.23 vs. 2.1 for NC and NTV, respectively). The nitrate concentration in the leached water reached up to 400 mg L–1, which implied a risk of groundwater pollution. Phosphorous losses through leaching were very low with concentrations of < 0.15 mg L–1, without any significant differences between treatments. The phosphorous concentrations in the surface horizon increased by 50.8% in T1 and by 66.8% in T2 in the NC soils, compared with increases of 20.3% and 38%, respectively, in the NTV soils. Due to the high infiltration capacity of the study soils, leaching effects must be considered in order to prevent groundwater pollution.