11 resultados para associated plasma protein A of pregnancy

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrauterine growth restriction (IUGR) is one of the leading causes of perinatal mortality and morbidity. Nowadays, this condition is detected in the 3rt and last trimester of gestation when the pathology is already established and success of therapeutic strategies are limited. As the physiopathology of the disease suggests that the problem stems from poor placental implantation, it would be quite advantageous to identify women at increased risk in the first or second trimester of gestation because it then might be possible to offer treatment interventions or at least to establish increased surveillance for high risk pregnancies. Maternal levels of pregnancy-associated plasma protein-A (PAPP-A) and free β human chorionic gonadotropin (free βhCG) has been shown to be effective in first trimester screening for chromosomal abnormalities, primarily trisomies 21, 13 and 18. Previous studies evaluating PAPP-A and free βhCG measured in the first trimester in relation with IUGR have provided conflicting results. Moreover, it has been suggested that black ethnicity is another important predictive factor for fetal growth restriction.Objective: To analyse the association between first trimester serum analytes (PAPP-A and free βhCG) and ethnicity with Intrauterine Growth Restriction.Methods: The study consists in a retrospective cohort, including all singleton pregnancies with complete outcome data that had undergone first trimester screening (PAPP-A and free βhCG) at 11-13+6weeks of gestation between 1/1/2010 - 31/12/2012 in Hospital Universitari Dr Josep Trueta. Biochemical markers are converted to multiples of the median (MoMs) and percentiles 5 and 10 are calculated. The association between free βhCG and PAPP-A with the incidence of IUGR is evaluated in combination with maternal ethnicity. Bivariate and logistic regression analyses are performed to adjust this association for co variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrauterine growth restriction (IUGR) is one of the leading causes of perinatal mortality and morbidity. Nowadays, this condition is detected in the 3rt and last trimester of gestation when the pathology is already established and success of therapeutic strategies are limited. As the physiopathology of the disease suggests that the problem stems from poor placental implantation, it would be quite advantageous to identify women at increased risk in the first or second trimester of gestation because it then might be possible to offer treatment interventions or at least to establish increased surveillance for high risk pregnancies. Maternal levels of pregnancy-associated plasma protein-A (PAPP-A) and free β human chorionic gonadotropin (free βhCG) has been shown to be effective in first trimester screening for chromosomal abnormalities, primarily trisomies 21, 13 and 18. Previous studies evaluating PAPP-A and free βhCG measured in the first trimester in relation with IUGR have provided conflicting results. Moreover, it has been suggested that black ethnicity is another important predictive factor for fetal growth restriction.Objective: To analyse the association between first trimester serum analytes (PAPP-A and free βhCG) and ethnicity with Intrauterine Growth Restriction.Methods: The study consists in a retrospective cohort, including all singleton pregnancies with complete outcome data that had undergone first trimester screening (PAPP-A and free βhCG) at 11-13+6weeks of gestation between 1/1/2010 - 31/12/2012 in Hospital Universitari Dr Josep Trueta. Biochemical markers are converted to multiples of the median (MoMs) and percentiles 5 and 10 are calculated. The association between free βhCG and PAPP-A with the incidence of IUGR is evaluated in combination with maternal ethnicity. Bivariate and logistic regression analyses are performed to adjust this association for co variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrauterine growth restriction (IUGR) is one of the leading causes of perinatal mortality and morbidity. Nowadays, this condition is detected in the 3rt and last trimester of gestation when the pathology is already established and success of therapeutic strategies are limited. As the physiopathology of the disease suggests that the problem stems from poor placental implantation, it would be quite advantageous to identify women at increased risk in the first or second trimester of gestation because it then might be possible to offer treatment interventions or at least to establish increased surveillance for high risk pregnancies. Maternal levels of pregnancy-associated plasma protein-A (PAPP-A) and free β human chorionic gonadotropin (free βhCG) has been shown to be effective in first trimester screening for chromosomal abnormalities, primarily trisomies 21, 13 and 18. Previous studies evaluating PAPP-A and free βhCG measured in the first trimester in relation with IUGR have provided conflicting results. Moreover, it has been suggested that black ethnicity is another important predictive factor for fetal growth restriction.Objective: To analyse the association between first trimester serum analytes (PAPP-A and free βhCG) and ethnicity with Intrauterine Growth Restriction.Methods: The study consists in a retrospective cohort, including all singleton pregnancies with complete outcome data that had undergone first trimester screening (PAPP-A and free βhCG) at 11-13+6weeks of gestation between 1/1/2010 - 31/12/2012 in Hospital Universitari Dr Josep Trueta. Biochemical markers are converted to multiples of the median (MoMs) and percentiles 5 and 10 are calculated. The association between free βhCG and PAPP-A with the incidence of IUGR is evaluated in combination with maternal ethnicity. Bivariate and logistic regression analyses are performed to adjust this association for co variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: The aim of this study was to investigate the genetic aetiology of intrahepatic cholestasis of pregnancy (ICP) and the impact of known cholestasis genes (BSEP, FIC1, and MDR3) on the development of this disease. Patients and methods: Sixty nine Finnish ICP patients were prospectively interviewed for a family history of ICP, and clinical features were compared in patients with familial ICP (patients with a positive family history, n=11) and sporadic patients (patients with no known family history of ICP, n=58). For molecular genetic analysis, 16 individuals from two independently ascertained Finnish ICP families were genotyped for the flanking markers for BSEP, FIC1, and MDR3. Results: The pedigree structures in 16% (11/69) of patients suggested dominant inheritance. Patients with familial ICP had higher serum aminotransferase levels and a higher recurrence risk (92% v 40%). Both segregation of haplotypes and multipoint linkage analysis excluded BSEP, FIC1, and MDR3 genes in the studied pedigrees. Additionally, the MDR3 gene, previously shown to harbour mutations in ICP patients, was negative for mutations when sequenced in four affected individuals from the two families. Conclusions: These results support the hypothesis that the aetiology of ICP is heterogeneous and that ICP is due to a genetic predisposition in a proportion of patients. The results of molecular genetic analysis further suggest that the previously identified three cholestasis genes are not likely to be implicated in these Finnish ICP families with dominant inheritance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A minimum cost spanning tree (mcst) problem analyzes the way to efficiently connect individuals to a source when they are located at different places. Once the efficient tree is obtained, the question on how allocating the total cost among the involved agents defines, in a natural way, a confliicting claims situation. For instance, we may consider the endowment as the total cost of the network, whereas for each individual her claim is the maximum amount she will be allocated, that is, her connection cost to the source. Obviously, we have a confliicting claims problem, so we can apply claims rules in order to obtain an allocation of the total cost. Nevertheless, the allocation obtained by using claims rules might not satisfy some appealing properties (in particular, it does not belong to the core of the associated cooperative game). We will define other natural claims problems that appear if we analyze the maximum and minimum amount that an individual should pay in order to support the minimum cost tree. Keywords: Minimum cost spanning tree problem, Claims problem, Core JEL classification: C71, D63, D71.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microenvironment of the central nervous system is important for neuronal function and development. During the early stages of embryo development the cephalic vesicles are filled by embryonic cerebrospinal fluid, a complex fluid containing different protein fractions, which contributes to the regulation of the survival, proliferation and neurogenesis of neuroectodermal stem cells. The protein content of embryonic cerebrospinal fluid from chick and rat embryos at the start of neurogenesis has already been determined. Most of the identified gene products are thought to be involved in the regulation of developmental processes during embryogenesis. However, due to the crucial roles played by embryonic cerebrospinal fluid during brain development, the embryological origin of the gene products it contains remains an intriguing question. According to the literature most of these products are synthesised in embryonic tissues other than the neuroepithelium. In this study we examined the embryological origin of the most abundant embryonic cerebrospinal fluid protein fractions by means of slot-blot analysis and by using several different embryonic and extraembryonic protein extracts, immunodetected with polyclonal antibodies. This first attempt to elucidate their origin is not based on the proteins identified by proteomic methods, but rather on crude protein fractions detected by SDS-PAGE analysis and to which polyclonal antibodies were specifically generated. Despite some of the limitations of this study, i.e. that one protein fraction may contain more than one gene product, and that a specific gene product may be contained in different protein fractions depending on post-translational modifications, our results show that most of the analysed protein fractions are not produced by the cephalic neuroectoderm but are rather stored in the egg reservoir; furthermore, few are produced by embryo tissues, thus indicating that they must be transported from their production or storage sites to the cephalic cavities, most probably via embryonic serum. These results raise the question as to whether the transfer of proteins from these two embryo compartments is regulated at this early developmental stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized γ-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actin is involved in the organization of the Golgi complex and Golgi-to-ER protein transport in mammalian cells. Little, however, is known about the regulation of the Golgi-associated actin cytoskeleton. We provide evidence that Cdc42, a small GTPase that regulates actin dynamics, controls Golgi-to-ER protein transport. We located GFP-Cdc42 in the lateral portions of Golgi cisternae and in COPI-coated and noncoated Golgi-associated transport intermediates. Overexpression of Cdc42 and its activated form Cdc42V12 inhibited the retrograde transport of Shiga toxin from the Golgi complex to the ER, the redistribution of the KDEL receptor, and the ER accumulation of Golgi-resident proteins induced by the active GTP-bound mutant of Sar1 (Sar1[H79G]). Coexpression of wild-type or activated Cdc42 and N-WASP also inhibited Golgito-ER transport, but this was not the case in cells expressing Cdc42V12 and N-WASP(AWA), a mutant form of N-WASP that lacks Arp2/3 binding. Furthermore, Cdc42V12 recruited GFP-NWASP to the Golgi complex. We therefore conclude that Cdc42 regulates Golgi-to-ER protein transport in an N-WASP¿dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine- protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters). This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake. that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total lack of visual experience [dark rearing (DR)] is known to prolong the critical period and delay development of sensory functions in mammalian visual cortex. Recent results show that neurotrophins (NTs) counteract the effects of DR on functional properties of visual cortical cells and exert a strong control on critical period duration. NTs are known to modulate the development and synaptic efficacy of neurotransmitter systems that are affected by DR. However, it is still unknown whether the actions of NTs in dark-reared animals involve interaction with neurotransmitter systems. We have studied the effects of DR on the expression of key molecules in the glutamatergic and GABAergic systems in control and NT-treated animals. We have found that DR reduced the expression of the NMDA receptor 2A subunit and its associated protein PSD-95 (postsynaptic density-95), of GRIP (AMPA glutamate receptor interacting protein), and of the biosynthetic enzyme GAD (glutamic acid decarboxylase). Returning dark-reared animals to light for 2 hr restored normal expression of the above-mentioned proteins almost completely. NT treatment specifically counteracts DR effects; NGF acts primarily on the NMDA system, whereas BDNF acts primarily on the GABAergic system. Finally, the action of NT4 seems to involve both excitatory and inhibitory systems. These data demonstrate that different NTs counteract DR effects by modulating the expression of key molecules of the excitatory and inhibitory neurotransmitter systems