31 resultados para antibiotic, anticarcinogenic and antiprotozoal
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The present work describes the development of a fast and robust analytical method for the determination of 53 antibiotic residues, covering various chemical groups and some of their metabolites, in environmental matrices that are considered important sources of antibiotic pollution, namely hospital and urban wastewaters, as well as in river waters. The method is based on automated off-line solid phase extraction (SPE) followed by ultra-high-performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry (UHPLC–QqLIT). For unequivocal identification and confirmation, and in order to fulfill EU guidelines, two selected reaction monitoring (SRM) transitions per compound are monitored (the most intense one is used for quantification and the second one for confirmation). Quantification of target antibiotics is performed by the internal standard approach, using one isotopically labeled compound for each chemical group, in order to correct matrix effects. The main advantages of the method are automation and speed-up of sample preparation, by the reduction of extraction volumes for all matrices, the fast separation of a wide spectrum of antibiotics by using ultra-high-performance liquid chromatography, its sensitivity (limits of detection in the low ng/L range) and selectivity (due to the use of tandem mass spectrometry) The inclusion of β-lactam antibiotics (penicillins and cephalosporins), which are compounds difficult to analyze in multi-residue methods due to their instability in water matrices, and some antibiotics metabolites are other important benefits of the method developed. As part of the validation procedure, the method developed was applied to the analysis of antibiotics residues in hospital, urban influent and effluent wastewaters as well as in river water samples
Resumo:
We have synthesized a series of dimers of (+)-(7R,11R)-huprine Y and evaluated their activity against Trypanosoma brucei, Plasmodium falciparum, rat myoblast L6 cells and human acetylcholinesterase (hAChE), and their brain permeability. Most dimers have more potent and selective trypanocidal activity than huprine Y and are brain permeable, but they are devoid of antimalarial activity and remain active against hAChE. Lead optimization will focus on identifying compounds with a more favourable trypanocidal/anticholinesterase activity ratio.
Resumo:
We have synthesized a series of dimers of (+)-(7R,11R)-huprine Y and evaluated their activity against Trypanosoma brucei, Plasmodium falciparum, rat myoblast L6 cells and human acetylcholinesterase (hAChE), and their brain permeability. Most dimers have more potent and selective trypanocidal activity than huprine Y and are brain permeable, but they are devoid of antimalarial activity and remain active against hAChE. Lead optimization will focus on identifying compounds with a more favourable trypanocidal/anticholinesterase activity ratio.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel, potentially less invasive alternative to laparoscopic surgery. However, the problems of transluminal access and closure represent significant obstacles to its successful introduction in humans. Objective: to evaluate the feasibility and safety of a novel device designed for transluminal access and closure in a survival porcine model. Subjects: Four adult female Yorkshire pigs were used in the study. Interventions: While under general anesthesia, the animals were prepared with multiple tap water enemas followed by instillation of an antibiotic suspension and povidone-iodine lavage. At a distance of 15 to 20 cm from the anus, the prototype device (LSI Solutions, Victor, NY, USA) deployed a circumscribing purse-string suture around the planned incision site and subsequently used a blade mechanism to create a 2.5-cm linear incision. The transcolonic incision was then closed by cinching and securing the purse-string suture with a titanium knot by use of a separate hand-activated suture-locking device. Main Outcome Measurements: The animals were monitored daily for signs of peritonitis and sepsis and were survived for 14 days. The peritoneal cavity was examined for peritonitis, and the colonic incision site was examined for wound dehiscence, pericolic abscess formation, and gross adhesions. Tissue samples from both incisional and random peritoneal sites were obtained for histologic examination. Results: Transcolonic incision and closure were successful in all 4 animals. The device performed in a rapid and reproducible fashion. All animals recovered without septic complications. At necropsy, there was no evidence of peritonitis, abscesses, or wound dehiscence. Salpingocolonic and colovesicular adhesions were noted in 3 of 4 animals. Histologic examination revealed microabscesses at the incision site in all animals. Conclusions: The prototype incision and closure device represents a promising solution to the problems of transluminal access for NOTES. The presence of incision-related adhesions and microabscesses signal the need for further refinement in aseptic technique.
Resumo:
Brucellosis is probably the commonest anthropozoonotic infection worldwide [1-3], but remains in various aspects an enigma in the 21st century [4]. Brucella melitensis remains the major cause of human disease worldwide, followed by B. abortus and B. suis, while rare but persisting cases of B. canis human infection and disease by novel Brucella pathogens of marine mammals have also emerged. The disease is re-emerging as a significant cause of travel-related disease [5] and represents an index of poor socioeconomic status (Figure 1). Its treatment is largely based even today on the principles applied half a century ago by pioneer researchers [6] and few modifications have been made in the following years, despite the emergence of new antibiotic classes and different therapeutic approaches [7].
Resumo:
bolism. Surgery was needed in 51% of cases and mortality was 42%. Prosthetic valve endocarditis (nine of 60, 13%) predominated in the aortic position and was associated with abscess formation, required surgery, and high mortality (78%). Pacemaker lead IE (seven of 69, 10%) is associated with a better prognosis when antibiotic treatment is combined with surgery. Conclusions:S lugdunensis IE is an uncommon cause of IE, involving mainly native left sided valves, and it is characterised by an aggressive clinical course. Mortality in left sided native valve IE is high but the prognosis has improved in recent years. Surgery has improved survival in left sided IE and, therefore, early surgery should always be considered. Prosthetic valve S lugdunensis IE carries an ominous prognosis.
Resumo:
The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin α-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin α-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly-). Generation of Hly- clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly- clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly- derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly- clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.
Resumo:
Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, ß-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to ß-lactam antibiotics is conferred by ß-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to ß-lactam antibiotics, namely two ß-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment.
Resumo:
Aim: To identify prophylactic antibiotic prescription practices among Spanish dentists with preferential dedication to Oral Surgery in different types of tooth extraction surgeries. Method: Members of the Spanish Oral Surgery Society were surveyed on antibiotic prophylaxis use in 4 different tooth extraction modalities scaled according to their surgical invasiveness. Results: Sixty-nine of the 105 distributed questionnaires were returned completed. Thirteen percent of the surveyed surgeons would prescribe antibiotics to prevent postoperative wound infection when confronted with conventional tooth extraction lasting less than 5 minutes. In the case of surgery lasting more than 5 minutes, the percentage of participants that would prescribe antibiotics increased to 39%. When a mucoperiosteal flap was elevated or an ostectomy was performed, 87% and 100%, respectively, would prescribe antibiotic prophylaxis. Amoxicillin and its combination with clavulanic acid were the most commonly prescribed antibiotics. All participants would prescribe the antibiotic orally, starting after surgery and with a duration that ranged from 2-8 days. Conclusions: The results obtained suggest that antibiotic prophylaxis for preventing local odontogenic infection is not being correctly implemented in Spain. This can generate new bacterial resistances, facilitate adverse drug reactions and favor opportunistic infections. Better designed studies are needed in order to clarify the role of antibiotics in the prevention of postsurgical wound infection
Resumo:
Objective: To observe the attitude of dentists and family doctors in prescribing antibiotics for the treatment of dental infections. Study Design: A poll was performed to determine the differences in the prescription of antibiotics for the treatment of odontogenic infection by dentists and family doctors of the primary care department of the Catalan Health Care Service. Results: A hundred polls were distributed among family doctors, and another 100 ones among primary care dentists assigned to the Catalan Health Care Service of the Generalitat de Catalunya. Of the total of questionnaires distributed, 63 were retuned and answered from dentists and 71 from family doctors. Eighty-one percent of dentists included in the opinion poll considered amoxicillin as the first antibiotic choice for the treatment of odontogenic infections, while 73.2% of family doctors preferred the combination of amoxicillin and clavulanic acid. With regard to antibiotics of choice in patients allergic to penicillin, 67.7% of family doctors preferred macrolides (25.4% opted for clarithromycin, 25.4% for erythromycin and 16.9% for spiramycin). However, clindamycin was the antibiotic most frequently prescribed by dentists (66.7%), followed by erythromycin (28.6%). Conclusions: The results of this study show a large discrepancy in the criteria for the treatment of odontogenic infections on the part of leading professionals involved in the management of this condition. Although the most common prescription involved beta-lactam antibiotics in both groups, several significant differences have been detected with regard to the second antibiotic choice