2 resultados para Waterman, Eleazar

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avui en dia la biologia aporta grans quantitats de dades que només la informàtica pot tractar. Les aplicacions bioinformàtiques són la més important eina d’anàlisi i comparació que tenim per entendre la vida i aconseguir desxifrar aquestes dades. Aquest projecte centra el seu esforç en l’estudi de les aplicacions dedicades a l’alineament de seqüències genètiques, i més concretament a dos algoritmes, basats en programació dinàmica i òptims: el Needleman&Wunsch i el Smith&Waterman. Amb l’objectiu de millorar el rendiment d’aquests algoritmes per a alineaments de seqüències grans, proposem diferents versions d’implementació. Busquem millorar rendiments en temps i espai. Per a aconseguir millorar els resultats aprofitem el paral·lelisme. Els resultats dels anàlisis de les versions els comparem per obtenir les dades necessàries per valorar cost, guany i rendiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.