7 resultados para Water conservation projects
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Els dies 14 i 15 de juliol de 2005 es va celebrar a la Facultat deLletres de la Universitat de Girona la sisena edició de l'EscolaInternacional de Medi Ambient, enguany dedicada a la gestió del'aigua i les conques fluvials i organitzada per l'Institut de MediAmbient de la Universitat de Girona i el Consorci Alba-Ter
Resumo:
The aim of this project is to evaluate the importance of submarine groundwater discharge sector in order to improve the water balance in Málaga-Granada region. The approach of this study arose from the the geology and the aquifers that indicate that there could be some discharge to the sea between Maro (Málaga) and Almuñécar (Granada) and the Andalusian’s Government and its Water Agence were really interested in evaluating it because there is a lot of population and few water available and the magnitude of groundwater discharge has generated controversy. Is well known that water is a scarce resource in this area and it’s very important for the society and for the environment. The legislation, the water policies, the knowledge of the aquifer and the geology, the water dynamics, the land use and the water perception in the society might help the management of this resource not just in Andalusia but in all the Mediterranean basin. The main objective is to evaluate the submarine groundwater discharge from the Alberquillas Aqufier to the sea by measuring 222Rn and Ra isotopes. Specific objectives have been established to achieve the main objective: A) Reveal the importance of water resources in the Mediterranean basin; B) Learn radiometric techniques for the study of groundwater discharge to the sea; C) Learn of sampling techniques of water samples for the measurement of Ra and Rn; D) Learn the techniques for measuring Ra (RaDeCC) and Rn (RAD7); E) Interpretation and discussion of results. During this semester, and in addition of the present study in Málaga- Granada region, the author has participated in the initial phase (sampling, analysis and interpretation of preliminary results) of other research projects focused on the study of submarine groundwater discharges through the use of Ra isotopes and 222Rn. These studies have been developed in different areas, including Alt Empordà (Roses and Sant Pere Pescador), Maresme with CMIMA’s group (Mediterranean Center for Marine and Environmental Research), Delta de l’Ebre, Peñíscola and Mallorca with the IMEDEA’s group (Mediterranean Institute for Advanced Studies).
Resumo:
Water resources management, as also water service provision projects in developing countries have difficulties to take adequate decisions due to scarce reliable information, and a lack of proper information managing. Some appropriate tools need to be developed in order to improve decision making to improve water management and access of the poorest, through the design of Decision Support Systems (DSS). On the one side, a DSS for developing co-operation projects on water access improvement has been developed. Such a tool has specific context constrains (structure of the system, software requirements) and needs (Logical Framework Approach monitoring, organizational-learning, accountability and evaluation) that shall be considered for its design. Key aspects for its successful implementation have appeared to be a participatory design of the system and support of the managerial positions at the inception phase. A case study in Tanzania was conducted, together with the Spanish NGO ONGAWA – Ingeniería para el Desarrollo. On the other side, DSS are required also to improve decision making on water management resources in order to achieve a sustainable development that not only improves the living conditions of the population in developing countries, but that also does not hinder opportunities of the poorest on those context. A DSS made to fulfil these requirements shall be using information from water resources modelling, as also on the environment and the social context. Through the research, a case study has been conducted in the Central Rift Valley of Ethiopia, an endhorreic basin 160 km south of Addis Ababa. There, water has been modelled using ArcSWAT, a physically based model which can assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time. Moreover, governance on water and environment as also the socioeconomic context have been studied.
Resumo:
In 1999, a set of coordinated projects and investments whose principal objective was to transform Barcelona into one of the main distribution points of southern Europe resulted in the relocation of the Llobregat River mouth. The mouth was relocated by draining the old river mouth and constructing a new one. The aim of this study was to characterise the physico-chemical properties and the aquatic macroinvertebrate communities of the new river mouth and to monitor the changes experienced by the estuarine environment during its creation. A sampling point was established in the river 1.8 km upstream from its connection with the new mouth, and two sampling points were established in the new mouth. Samples of water and macroinvertebrates were collected every two months from May 2004 to June 2005, covering the periods before (from May to September 2004) and after (from September 2004 to June 2005) the new mouth was connected to the river and the sea. During the period before its connection to the river and the sea, the new mouth was functionally similar to a lagoon, with clear waters, charophytes and a rich invertebrate community. After the connection was completed, seawater penetrated the river mouth and extended to the connection point with the river (approximately 3.9 km upstream). An increase in conductivity from 4-6 mS cm 1 to 24-30 mS cm 1 caused important changes in the macroinvertebrate community of the new mouth. An initial defaunation was followed by a colonisation of the new mouth by brackish-water and marine invertebrate species. Due to its design (which allows the penetration of the sea) and the decreased discharge from the lower part of the Llobregat River, the new mouth has become an arm of the sea
Resumo:
Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.
Resumo:
Brown trout is a cold-adapted freshwater species with restricted distribution to headwater streams in rivers of the South European peninsulas, where populations are highly vulnerable because Mediterranean regions are highly sensitive to the global climatic warming. Moreover, these populations are endangered due to the introgressive hybridization with cultured stocks. Individuals from six remnant populations in Western Mediterranean rivers were sequenced for the complete mitochondrial DNA control region and genotyped for 11 nuclear markers. Three different brown trout lineages were present in the studied region. Significant genetic divergence was observed among locations and a strong effect of genetic drift was suggested. An important stocking impact (close to 25%) was detected in the zone. Significant correlations between mitochondrial-based rates of hatchery introgression and water flow variation suggested a higher impact of stocked females in unstable habitats. In spite of hatchery introgression, all populations remained highly differentiated, suggesting that native genetic resources are still abundant. However, climatic predictions indicated that suitable habitats for the species in these rivers will be reduced and hence trout populations are highly endangered and vulnerable. Thus, management policies should take into account these predictions to design upstream refuge areas to protect remnant native trout in the region
Resumo:
We have pragmatic and ethical obligations to conserve rivers and their biodiversity. This chapter outlines how and why river conservation is important. To make a difference, we must act as individuals and groups, using water wisely and protecting vulnerable assets such as water quality, riparian zones and aquatic biodiversity