5 resultados para Water Resource
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Nowadays, service providers in the Cloud offer complex services ready to be used as it was a commodity like water or electricity to their customers with any other extra effort for them. However, providing these services implies a high management effort which requires a lot of human interaction. Furthermore, an efficient resource management mechanism considering only provider's resources is, though necessary, not enough, because the provider's profit is limited by the amount of resources it owns. Dynamically outsourcing resources to other providers in response to demand variation avoids this problem and makes the provider to get more profit. A key technology for achieving these goals is virtualization which facilitates provider's management and provides on-demand virtual environments, which are isolated and consolidated in order to achieve a better utilization of the provider's resources. Nevertheless, dealing with some virtualization capabilities implies an effort for the user in order to take benefit from them. In order to avoid this problem, we are contributing the research community with a virtualized environment manager which aims to provide virtual machines that fulfils with the user requirements. Another challenge is sharing resources among different federated Cloud providers while exploiting the features of virtualization in a new approach for facilitating providers' management. This project aims for reducing provider's costs and at the same time fulfilling the quality of service agreed with the customers while maximizing the provider's revenue. It considers resource management at several layers, namely locally to each node in the provider, among different nodes in the provider, and among different federated providers. This latter layer supports the novel capabilities of outsourcing when the local resources are not enough to fulfil the users demand, and offering resources to other providers when the local resources are underused.
Resumo:
The aim of this project is to evaluate the importance of submarine groundwater discharge sector in order to improve the water balance in Málaga-Granada region. The approach of this study arose from the the geology and the aquifers that indicate that there could be some discharge to the sea between Maro (Málaga) and Almuñécar (Granada) and the Andalusian’s Government and its Water Agence were really interested in evaluating it because there is a lot of population and few water available and the magnitude of groundwater discharge has generated controversy. Is well known that water is a scarce resource in this area and it’s very important for the society and for the environment. The legislation, the water policies, the knowledge of the aquifer and the geology, the water dynamics, the land use and the water perception in the society might help the management of this resource not just in Andalusia but in all the Mediterranean basin. The main objective is to evaluate the submarine groundwater discharge from the Alberquillas Aqufier to the sea by measuring 222Rn and Ra isotopes. Specific objectives have been established to achieve the main objective: A) Reveal the importance of water resources in the Mediterranean basin; B) Learn radiometric techniques for the study of groundwater discharge to the sea; C) Learn of sampling techniques of water samples for the measurement of Ra and Rn; D) Learn the techniques for measuring Ra (RaDeCC) and Rn (RAD7); E) Interpretation and discussion of results. During this semester, and in addition of the present study in Málaga- Granada region, the author has participated in the initial phase (sampling, analysis and interpretation of preliminary results) of other research projects focused on the study of submarine groundwater discharges through the use of Ra isotopes and 222Rn. These studies have been developed in different areas, including Alt Empordà (Roses and Sant Pere Pescador), Maresme with CMIMA’s group (Mediterranean Center for Marine and Environmental Research), Delta de l’Ebre, Peñíscola and Mallorca with the IMEDEA’s group (Mediterranean Institute for Advanced Studies).
Resumo:
Water scarcity is a long-standing problem in Catalonia, as there are significant differences in the spatial and temporal distribution of water through the territory. There has consequently been a debate for many years about whether the solution to water scarcity must be considered in terms of efficiency or equity, the role that the public sector must play and the role that market-based instruments should play in water management. The aim of this paper is to use a Computable General Equilibrium (CGE) model to analyze the advantages and disadvantages associated with different policy instruments, from both a supply and a demand viewpoint, which can be applied to water management in Catalonia. We also introduce an ecological sector in our CGE model, allowing us to analyze the environmental impact of the alternative policies simulated. The calibration of the exogenous variables of the CGE model is performed by using a Social Accounting Matrix (SAM) for the Catalan economy with 2001 data. The results suggest that taking into account the principle of sustainability of the resource, the policy debate between supply and demand in water policies is obsolete, and a new combination of policies is required to respect the different values associated with water. Keywords: Water Policies; Computable General Equilibrium Model; Economic Effects; Environmental Effects.
Resumo:
In this paper we address the complexity of the analysis of water use in relation to the issue of sustainability. In fact, the flows of water in our planet represent a complex reality which can be studied using many different perceptions and narratives referring to different scales and dimensions of analysis. For this reason, a quantitative analysis of water use has to be based on analytical methods that are semantically open: they must be able to define what we mean with the term “water” when crossing different scales of analysis. We propose here a definition of water as a resource that deal with the many services it provides to humans and ecosystems. WE argue that water can fulfil so many of them since the element has many characteristics that allow for the resource to be labelled with different attributes, depending on the end use –such as drinkable. Since the services for humans and the functions for ecosystems associated with water flows are defined on different scales but still interconnected it is necessary to organize our assessment of water use across different hierarchical levels. In order to do so we define how to approach the study of water use in the Societal Metabolism, by proposing the Water Metabolism, tganized in three levels: societal level, ecosystem level and global level. The possible end uses we distinguish for the society are: personal/physiological use, household use, economic use. Organizing the study of “water use” across all these levels increases the usefulness of the quantitative analysis and the possibilities of finding relevant and comparable results. To achieve this result, we adapted a method developed to deal with multi-level, multi-scale analysis - the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach - to the analysis of water metabolism. In this paper, we discuss the peculiar analytical identity that “water” shows within multi-scale metabolic studies: water represents a flow-element when considering the metabolism of social systems (at a small scale, when describing the water metabolism inside the society) and a fund-element when considering the metabolism o ecosystems (at a larger scale when describing the water metabolism outside the society). The theoretical analysis is illustrated using two case which characterize the metabolic patterns regarding water use of a productive system in Catalonia and a water management policy in Andarax River Basin in Andalusia.
Resumo:
Irrigated agriculture has come under close scrutiny in Europe recently because of its high share of total water consumption and its apparent inefficiency. Several water policies have been advocated, in particular the use of economic instruments such as water markets. This paper simulates the impact of a policy based upon water markets on agricultural production in the internal river basins of Catalonia (Spain). This zone presents certain particularities that make it very interesting to study: competition between sectors for the resource (agriculture-urban consumption-recreational uses), recent periods of resource insufficiency and conflicts between irrigators as a result of the measures taken by the hydraulic administration in drought situations. The results show that these markets would guarantee an optimal reassignment of the resource in situations of supply restrictions, and although compared to the situation without markets they would not mean higher economic profits for the irrigators, they could prevent conflicts between them. Nevertheless, doubts exist about their acceptance by irrigators