21 resultados para Waste water treatments plants
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
L’objectiu principal és presentar un nou prototipus d’eina per al disseny de les plantes de tractament d’aigües residuals utilitzant models mecànics dinàmics quantificant la incertesa
Resumo:
All the experimental part of this final project was done at Laboratoire de Biotechnologie Environnementale (LBE) from the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, during 6 months (November 2013- May 2014). A fungal biofilter composed of woodchips was designed in order to remove micropollutants from the effluents of waste water treatment plants. Two fungi were tested: Pleurotus ostreatus and Trametes versicolor in order to evaluate their efficiency for the removal of two micropollutants: the anti-inflammatory drug naproxen and the antibiotic sulfamethoxazole,. Although Trametes versicolor was able to degrade quickly naproxen, this fungus was not any more active after one week of operation in the filter. Pleurotus ostreatus was, on contrary, able to survive more than 3 months in the filter, showing good removal efficiencies of naproxen and sulfamethoxazole during all this period, in tap water but also in real treated municipal wastewater. Several other experiments have provided insight on the removal mechanisms of these micropollutants in the fungal biofilter (degradation and adsorption) and also allowed to model the removal trend. Fungal treatment with Pleurotus ostreatus grown on wood substrates appeared to be a promising solution to improve micropollutants removal in wastewater.
Resumo:
L’aigua i l’energia formen un binomi indissociable. En relació al cicle de l’aigua, des de fa varies dècades s’han desenvolupat diferents formes per recuperar part de l’energia relacionada amb l’aigua, per exemple a partir de centrals hidroelèctriques. No obstant, l’ús d’aquesta aigua també porta associat un gran consum energètic, relacionat sobretot amb el transport, la distribució, la depuració, etc... La depuració d’aigües residuals porta associada una elevada demanda energètica (Obis et al.,2009). En termes energètics, tot i que la despesa elèctrica d’una EDAR varia en funció de diferents paràmetres com la configuració i la capacitat de la planta, la càrrega a tractar, etc... es podria considerar que el rati mig seria d’ aproximadament 0.5 KWh•m-3.Els principals costos d’explotació estan relacionats tant amb la gestió de fangs (28%) com amb el consum elèctric (25%) (50% tractament biològic). Tot i que moltes investigacions relacionades amb el tractament d’aigua residual estan encaminades en disminuir els costos d’operació, des de fa poques dècades s’està investigant la viabilitat de que l’aigua residual fins i tot sigui una font d’energia, canviant la perspectiva, i començant a veure l’aigua residual no com a una problemàtica sinó com a un recurs. Concretament s’estima que l’aigua domèstica conté 9.3 vegades més energia que la necessària per el seu tractament mitjançant processos aerobis (Shizas et al., 2004). Un dels processos més desenvolupats relacionats amb el tractament d’aigües residuals i la producció energètica és la digestió anaeròbia. No obstant, aquesta tecnologia permet el tractament d’altes càrregues de matèria orgànica generant un efluent ric en nitrogen que s’haurà de tractar amb altres tecnologies. Per altre banda, recentment s’està investigant una nova tecnologia relacionada amb el tractament d’aigües residuals i la producció energètica: les piles biològiques (microbial fuel cells, MFC). Aquesta tecnologia permet obtenir directament energia elèctrica a partir de la degradació de substrats biodegradables (Rabaey et al., 2005). Les piles biològiques, més conegudes com a Microbial Fuel Cells (acrònim en anglès, MFC), són una emergent tecnologia que està centrant moltes mirades en el camp de l’ investigació, i que es basa en la producció d’energia elèctrica a partir de substrats biodegradables presents en l’aigua residual (Logan., 2008). Els fonaments de les piles biològiques és molt semblant al funcionament d’una pila Daniell, en la qual es separa en dos compartiments la reacció d’oxidació (compartiment anòdic) i la de reducció (compartiment catòdic) amb l’objectiu de generar un determinat corrent elèctric. En aquest estudi, bàsicament es mostra la posada en marxa d'una pila biològica per a l'eliminació de matèria orgànica i nitrogen de les aigües residuals.
Resumo:
Photosynthetic activity of cereals has traditionally been studied using leaves, thus neglecting the role of other organs such as ears. Here, we studied the effects of water status and genotypes on the photosynthetic activity of the flag leaf blade and the ear of durum wheat. The various parameters related to the photosynthetic activity were analysed in relation to the total above-ground plant biomass and grain yield at maturity. Four local varieties plus two cultivars adapted to the semiarid areas of South Morocco were grown in pots in a greenhouse. Five different water treatments were maintained from the beginning of stem elongation to maturity, when shoot biomass and grain yield were recorded. The net photosynthesis (A), stomatal conductance (gs) and transpiration (T) of the ear and the flag leaf were measured at anthesis. In both organs these factors decreased significantly with water deficit, whereas the A/T and A/gs ratios increased. The genotype effect was also significant for all traits studied. Whole-organ photosynthesis was much higher in the ear than in the flag leaf in well-watered conditions. As water stress developed, photosynthesis decreased less in the ear than in the flag leaf. Whole-ear photosynthesis correlated better than flag leaf photosynthesis with biomass and yield. Nevertheless, the relationships of the whole flag leaf with biomass and yield improved as the water stress became more severe, suggesting a progressive shift of yield from sink to source limitation. For all water regimes the ratios A/gs and A/T of the ear also showed a higher (negative) correlation with both biomass and yield than those of the flag leaf. The results indicate that the ear has a greater photosynthetic role than the flag leaf in determining grain yield, not only in drought but also in the absence of stress.
Resumo:
Drought is the main constraint on wheat yield in Mediterranean conditions. The photosynthesis, chlorophyll fluorescence and plant growth parameters of durum wheat (Triticum turgidum, L. var. durum) were compared at three [CO2] (i.e., depleted 260 ppm, current 400ppm and elevated 700 ppm) in plants subjected to twowater regimes (i.e.,well-wateredWW, and mildwater stress by drought orwater deficit WS), during pre-anthesis, post-anthesis and the end of grain filling. We showed that [CO2] effects on plants are modulated by water availability. Plants at depleted [CO2] showed photosynthetic acclimation (i.e., up-regulation) and reduced plant biomass and Harvest Index, but depleted [CO2] combined with WS has a more negative impact on plants with decreases in C assimilation and biomass. Plants at elevated [CO2] had decreased plant growth and photosynthesis in response to a down-regulation mechanism resulting from a decrease in Rubisco and N content, but plants exposed to a combination of elevated [CO2] and WS were the most negatively affected (e.g., on plant biomass).
Resumo:
The present paper studied the performance of the stable isotope signatures of carbon (δ13C), nitrogen (δ15N) and oxygen (δ18O) in plants when used to assess early vigour and grain yield (GY) in durum wheat growing under mild and moderate Mediterranean stress conditions. A collection of 114 recombinant inbred lines was grown under rainfed (RF) and supplementary irrigation (IR) conditions. Broad sense heritabilities (H2) for GY and harvest index (HI) were higher under RF conditions than under IR. Broad sense heritabilities for δ13C were always above 0·60, regardless of the plant part studied, with similar values for IR and RF trials. Some of the largest genetic correlations with GY were those shown by the δ13C content of the flag leaf blade and mature grains. Under both water treatments, mature grains showed the highest negative correlations between δ13C and GY across genotypes. Flag leaf δ13C was negatively correlated with GY only under RF conditions. The δ13C in seedlings was negatively correlated, under IR conditions only, with GY but also with early vigour. The sources of variation in early vigour were studied by stepwise analysis using the stable isotope signatures measured in seedlings. The δ13C was able to explain almost 0·20 of this variation under RF, but up to 0·30 under IR. In addition, nitrogen concentration in seedlings accounted for another 0·05 of variation, increasing the amount explained to 0·35. The sources of variation in GY were also studied through stable isotope signatures and biomass of different plant parts: δ13C was always the first parameter to appear in the models for both water conditions, explaining c. 0·20 of the variation. The second parameter (δ15N or N concentration of grain, or biomass at maturity) depended on the water conditions and the plant tissue being analysed. Oxygen isotope composition (δ18O) was only able to explain a small amount of the variation in GY. In this regard, despite the known and previously described value of δ13C as a tool in breeding, δ15N is confirmed as an additional tool in the present study. Oxygen isotope composition does not seem to offer any potential, at least under the conditions of the present study.
Resumo:
El tractament de les aigües en nuclis menors de 2000 habitants es troba pendent de completar per part de l’Agència Catalana de l’Aigua més concretament al corresponent Pla de Sanejament d’Aigües Residuals Urbanes (PSARU). El nucli de La Nou de Gaià (al Tarragonès) es troba pendent de la construcció de la corresponent instal·lació de sanejament, projectada al 2007. Alternativament a les depuradores tradicionals basades en l’ús de formigó (o materials alternatius) i en la despesa elèctrica per assegurar una aeració i una evacuació dels fangs generats, existeixen tecnologies “toves”. Aquestes tecnologies, també conegudes com a “verdes”, es basen en imitar els sistemes naturals maximitzant el seu potencial d’autodepuració. A grans trets existeixen dos formes de depurar les aigües de forma ecològica”: llacunatges (existeix una capa d’aigua lliure) i filtres verds. El present estudi es basa en l’aplicació de filtres verds de morfologia vertical i flux subsuperficial, plantat amb canyes dels generes Scirpus o Phragmites. El resultat han estat 4 bases de 35*35 per a tractar un cabal de 150 m3/d i una població equivalent de 1272.
Resumo:
El tractament de les aigües en nuclis menors de 2000 habitants es troba pendent de completar per part de l’Agència Catalana de l’Aigua més concretament al corresponent Pla de Sanejament d’Aigües Residuals Urbanes (PSARU). El nucli de La Nou de Gaià (al Tarragonès) es troba pendent de la construcció de la corresponent instal·lació de sanejament, projectada al 2007. Alternativament a les depuradores tradicionals basades en l’ús de formigó (o materials alternatius) i en la despesa elèctrica per assegurar una aeració i una evacuació dels fangs generats, existeixen tecnologies “toves”. Aquestes tecnologies, també conegudes com a “verdes”, es basen en imitar els sistemes naturals maximitzant el seu potencial d’autodepuració. A grans trets existeixen dos formes de depurar les aigües de forma ecològica”: llacunatges (existeix una capa d’aigua lliure) i filtres verds. El present estudi es basa en l’aplicació de filtres verds de morfologia vertical i flux subsuperficial, plantat amb canyes dels generes Scirpus o Phragmites. El resultat han estat 4 bases de 35*35 per a tractar un cabal de 150 m3/d i una població equivalent de 1272.
Resumo:
Two concentration methods for fast and routine determination of caffeine (using HPLC-UV detection) in surface, and wastewater are evaluated. Both methods are based on solid-phase extraction (SPE) concentration with octadecyl silica sorbents. A common “offline” SPE procedure shows that quantitative recovery of caffeine is obtained with 2 mL of an elution mixture solvent methanol-water containing at least 60% methanol. The method detection limit is 0.1 μg L−1 when percolating 1 L samples through the cartridge. The development of an “online” SPE method based on a mini-SPE column, containing 100 mg of the same sorbent, directly connected to the HPLC system allows the method detection limit to be decreased to 10 ng L−1 with a sample volume of 100 mL. The “offline” SPE method is applied to the analysis of caffeine in wastewater samples, whereas the “on-line” method is used for analysis in natural waters from streams receiving significant water intakes from local wastewater treatment plants
Resumo:
Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.
Resumo:
Corrosion reduces the lifetime of municipal solid waste incineration (MSWI) superheater tubes more than any other cause. It can be minimized by the careful selection of those materials that are most resistant to corrosion under operating conditions. Since thousands of different materials are already known and many more are developed every year, here the selection methodology developed by Prof. Ashby of the University of Cambridge was used to evaluate the performance of different materials to be used as MSWI superheater tubes. The proposed materials can operate at steam pressures and temperatures over 40 bars and 400ºC, respectively. Two case studies are presented: one makes a balanced selection between mechanical properties and cost per thermal unit; and the other focuses on increasing tube lifetime. The balanced selection showed that AISI 410 martensitic stainless steel (wrought, hard tempered) is the best candidate with a good combination of corrosion resistance, a relatively low price (0.83-0.92 e/kg) and a good thermal conductivity (23-27 W/m K). Meanwhile, Nitronic 50/XM-19 stainless steel is the most promising candidate for longterm selection, as it presents high corrosion resistance with a relatively low price (4.86-5.14 e/kg) compared to Ni-alloys.
Resumo:
The problem of waste management is causing growing concern due to increasing generation rates, the emissions into soil, water and air, the social conflicts derived from the election of disposal sites and the loss of resources and energy among others. In this work, an innovative methodology is used to enable a better understanding of the waste generation and management system in Italy. Two new waste indicators are built to complement the conventional indicators used by official statistics. Then a multi-scale analysis of the Density of Waste Disposed (DWD) is carried out to highlight the territorial diversity of waste performances and test its contribution to detect plausible risky areas. Starting from Italian regions, the scale down goes on to the provincial level and, only for the region of Campania, the municipal one. First, the analysis shows that the DWD is able to complement the information provided by the conventional waste indicators. Second, the analysis shows the limitations of using a unique institutional solution to waste management problems. In this sense the multi-scale analysis provides with a more realistic picture of Italian waste system than using a single scale.
Resumo:
In the ornamental plant production region of Girona (Spain), which is one of the largest of its kind in southern Europe, most of the surface is irrigated using wide blocked-end furrows. The objectives of this paper were: (1) to evaluate the irrigation scheduling methods used by ornamental plant producers; (2) to analyse different scenarios inorder to assess how they affect irrigation performance; (3) to evaluate the risk of deep percolation; and (4) to calculategross water productivity. A two-year study in a representative commercial field, planted with Prunus cerasifera ‘Nigra’, was carried out. The irrigation dose applied by the farmers was slightly smaller than the required water dose estimated by the use of two different methods: the first based on soil water content, and the second based on evapotranspiration. Distribution uniformity and application efficiency were high, with mean values above 87%. Soil water contentmeasurements revealed that even at the end of the furrow, where the infiltrated water depth was greatest, more than 90% of the infiltrated water was retained in the shallowest 40 cm of the soil; accordingly, the risk of water loss due to deep percolation was minimal. Gross water productivity for ornamental tree production was € 11.70 m–3, approximately 20 times higher than that obtained with maize in the same region
Resumo:
The main objective of this study was the management of corn stalk waste as reinforcement for polypropylene (PP) injection moulded composites as an alternative to wood flour and fibers. In the first step, corn stalk waste was subjected to various treatments, and four different corn stalk derivatives (flour and fibers) able to be used as reinforcement of composite materials were prepared and characterized. These derivatives are corn stalk flour, thermo-mechanical, semi-chemical, and chemical fibers. They were characterized in terms of their yield, lignin content, Kappa number, fiber length/diameter ratio, fines, coarseness, viscosity, and the length at the break of a standard sheet of paper. Results showed that the corn stalk derivatives have different physico-chemical properties. In the second step, the prepared flour and fibers were explored as a reinforcing element for PP composites. Coupled and non-coupled PP composites were prepared and tested for tensile properties. For overall trend, with the addition of a coupling agent, tensile properties of composites significantly improved, as compared with non-coupled samples. In addition, a morphological study revealed the positive effect of the coupling agent on the interfacial bonding. The composites prepared with semichemical fiber gave better results in comparison with the rest of the corn stalk derivatives due to its chemical characteristics
Resumo:
Sludges resulting from wastewater treatment processes have a characteristically high water content, which complicates handling operations such as pumping, transport and disposal. To enhance the dewatering of secondary sludge, the effect of ultrasound waves, thermal treatment and chemical conditioning with NaOH have been studied. Two features of treated sludges were examined: their rheological behavior and their dewaterability. The rheological tests consisted of recording shear stress when the shear rate increases and decreases continuously and linearly with time, and when it increases and decreases in steps. Steady-state viscosity and thixotropy were obtained from the rheological tests, and both decreased significantly in all cases with increased treatment intensity. Centrifugation of ultrasonicated and thermally treated sludges allowed the total solid content to be increased by approximately 16.2% and 17.6%, respectively. These dewatered sludges had a lower viscosity and thixotropy than the untreated sludge. In contrast, alkali conditioning barely allowed the sludge to be dewatered by centrifugation, despite decreasing its viscosity and thixotropy.