18 resultados para WHITE-MATTER CHANGES
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We sometimes vividly remember things that did not happen, a phenomenon with general relevance, not only in the courtroom. It is unclear to what extent individual differences in false memories are driven by anatomical differences in memory-relevant brain regions. Here we show in humans that microstructural properties of different white matter tracts as quantified using diffusion tensor imaging are strongly correlated with true and false memory retrieval. To investigate these hypotheses, we tested a large group of participants in a version of the Deese-Roediger-McDermott paradigm (recall and recognition) and subsequently obtained diffusion tensor images. A voxel-based whole-brain level linear regression analysis was performedto relatefractional anisotropyto indices oftrue andfalse memory recall and recognition. True memory was correlated to diffusion anisotropy in the inferior longitudinal fascicle, the major connective pathway of the medial temporal lobe, whereas a greater proneness to retrieve false items was related to the superior longitudinal fascicle connecting frontoparietal structures. Our results show that individual differences in white matter microstructure underlie true and false memory performance.
Resumo:
A recent publication reported an exciting polygenic effect of schizophrenia (SCZ) risk variants, identified by a large genome-wide association study (GWAS), on total brain and white matter volumes in schizophrenic patients and, even more prominently, in healthy subjects. The aim of the present work was to replicate and then potentially extend these findings. According to the original publication, polygenic risk scores using single nucleotide polymorphism (SNP) information of SCZ GWAS (polygenic SCZ risk scores; PSS) were calculated in 122 healthy subjects, enrolled in a structural magnetic resonance imaging (MRI) study. These scores were computed based on P-values and odds ratios available through the Psychiatric GWAS Consortium. In addition, polygenic white matter scores (PWM) were calculated, using the respective SNP subset in the original publication. None of the polygenic scores, either PSS or PWM, were found to be associated with total brain, white matter or gray matter volume in our replicate sample. Minor differences between the original and the present study that might have contributed to lack of reproducibility (but unlikely explain it fully), are number of subjects, ethnicity, age distribution, array technology, SNP imputation quality and MRI scanner type. In contrast to the original publication, our results do not reveal the slightest signal of association of the described sets of GWAS-identified SCZ risk variants with brain volumes in adults. Caution is indicated in interpreting studies building on polygenic risk scores without replication sample.
Resumo:
Background: The rate of recovery from the vegetative state (VS) is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results: fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions: These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.
Resumo:
Background: The rate of recovery from the vegetative state (VS) is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results: fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions: These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.
Resumo:
Background: The rate of recovery from the vegetative state (VS) is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results: fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions: These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.
Resumo:
La tecnologia GPGPU permet paral∙lelitzar càlculs executant operacions aritmètiques en els múltiples processadors de que disposen els xips gràfics. S'ha fet servir l'entorn de desenvolupament CUDA de la companyia NVIDIA, que actualment és la solució GPGPU més avançada del mercat. L'algorisme de neuroimatge implementat pertany a un estudi VBM desenvolupat amb l'eina SPM. Es tracta concretament del procés de segmentació d'imatges de ressonància magnètica cerebrals, en els diferents teixits dels quals es composa el cervell: matèria blanca, matèria grisa i líquid cefaloraquidi. S'han implementat models en els llenguatges Matlab, C i CUDA, i s'ha fet un estudi comparatiu per plataformes hardware diferents.
Resumo:
La adrenoleucodistrofia ligada al X (X-ALD) es un enfermedad neurometabólica fatal caracterizada por una desmielinización cerebral progresiva infantil (CCALD) o por una neurodegeneración de la médula espinal (adrenomieloneuropatía, AMN), insuficiencia adrenal y acumulación de ácidos grasos de cadena muy larga (AGCML) como el ácido hexacosanoico (C26:0) en tejidos. La enfermedad está causada por mutaciones en el gen ABCD1 el cual codifica para un transportador peroxisomoal que importa AGCML. El ratón knockout para Abcd1 (Abcd1-) desarrolla alteraciones en la médula espinal que mimetizan el modelo de enfermedad AMN con inicio de los síntomas a los 20 meses. Previamente, nuestro grupo evidenció mediante análisis de transcriptómica, una desregulación mitocondrial en el modelo murino Abcd1- . En este trabajo demostramos que tanto en el ratón Abcd1- como en la sustancia blanca afectada de pacientes X-ALD hay una depleción mitocondrial. Para poder explicar esta depleción, estudiamos los niveles de un repressor de la biogenesis mitocondrial, RIP140. En cultivo organotípico de cortes de médula espinal observamos un aumento de los niveles proteicos de RIP140 en el ratón Abcd1- y también un aumento mediado por C26:0. Estos resultados indican que la sobreexpresión de RIP140 puede ser la responsable de la depleción mitocondrial presente en el ratón Abcd1- y una posible nueva diana terapèutica para la X-ALD.
Resumo:
Many aspects of human behavior are driven by rewards, yet different people are differentially sensitive to rewards and punishment. In this study, we showthat white matter microstructure inthe uncinate/inferiorfronto-occipitalfasciculus, defined byfractional anisotropy values derived from diffusion tensor magnetic resonance images, correlates with both short-term (indexed by the fMRI blood oxygenation level-dependent response to reward in the nucleus accumbens) and long-term (indexed by the trait measure sensitivity to punishment) reactivityto rewards.Moreover,traitmeasures of reward processingwere also correlatedwith reward-relatedfunctional activation in the nucleus accumbens. The white matter tract revealed by the correlational analysis connects the anterior temporal lobe with the medial and lateral orbitofrontal cortex and also supplies the ventral striatum. The pattern of strong correlations suggests an intimate relationship betweenwhitematter structure and reward-related behaviorthatmay also play a rolein a number of pathological conditions, such as addiction and pathological gambling.
Resumo:
We study the contribution of money to business cycle fluctuations in the US,the UK, Japan, and the Euro area using a small scale structural monetary business cycle model. Constrained likelihood-based estimates of the parameters areprovided and time instabilities analyzed. Real balances are statistically importantfor output and inflation fluctuations. Their contribution changes over time. Models giving money no role provide a distorted representation of the sources of cyclicalfluctuations, of the transmission of shocks and of the events of the last 40 years.
Resumo:
We examine the role of expectations in the Great Moderation episode. We derive theoretical restrictions in a New-Keynesian model and test them using measures of expectations obtained from survey data, the Greenbook and bond markets. Expectations explain the dynamics of inflation and of interest rates but their importance is roughly unchanged over time. Systems with and without expectations display similar reduced form characteristics. Including or excluding expectations hardly changes the economic explanation of the Great Moderation. Results are robust to changes in the structure of the empirical model.
Resumo:
We study the properties of (K) over bar* mesons in nuclear matter using a unitary approach in coupled channels within the framework of the local hidden gauge formalism and incorporating the (K) over bar pi decay channel in matter. The in-medium (K) over bar *N interaction accounts for Pauli blocking effects and incorporates the (K) over bar* self-energy in a self-consistent manner. We also obtain the (K) over bar* (off-shell) spectral function and analyze its behavior at finite density and momentum. At a normal nuclear matter density, the (K) over bar* meson feels a moderately attractive potential, while the (K) over bar* width becomes five times larger than in free space. We estimate the transparency ratio of the gamma A -> K+K*(-) A` reaction, which we propose as a feasible scenario at the present facilities to detect changes in the properties of the (K) over bar* meson in nuclear medium.
Resumo:
Background: The combination of oleoyl-estrone (OE) and a selective b3-adrenergic agonist (B3A; CL316,243) treatment in rats results in a profound and rapid wasting of body reserves (lipid). Methods: In the present study we investigated the effect of OE (oral gavage) and/or B3A (subcutaneous constant infusion) administration for 10 days to overweight male rats, compared with controls, on three distinct white adipose tissue (WAT) sites: subcutaneous inguinal, retroperitoneal and epididymal. Tissue weight, DNA (and, from these values cellularity), cAMP content and the expression of several key energy handling metabolism and control genes were analyzed and computed in relation to the whole site mass. Results: Both OE and B3A significantly decreased WAT mass, with no loss of DNA (cell numbers). OE decreased and B3A increased cAMP. Gene expression patterns were markedly different for OE and B3A. OE tended to decrease expression of most genes studied, with no changes (versus controls) of lipolytic but decrease of lipogenic enzyme genes. The effects of B3A were widely different, with a generalized increase in the expression of most genes, including the adrenergic receptors, and, especially the uncoupling protein UCP1. Discussion: OE and B3A, elicit widely different responses in WAT gene expression, end producing similar effects, such as shrinking of WAT, loss of fat, maintenance of cell numbers. OE acted essentially on the balance of lipolysislipogenesis and the blocking of the uptake of substrates; its decrease of synthesis favouring lipolysis. B3A induced a shotgun increase in the expression of most regulatory systems in the adipocyte, an effect that in the end favoured again the loss of lipid; this barely selective increase probably produces inefficiency, which coupled with the increase in UCP1 expression may help WAT to waste energy through thermogenesis. Conclusions: There were considerable differences in the responses of the three WAT sites. OE in general lowered gene expression and stealthily induced a substrate imbalance. B3A increasing the expression of most genes enhanced energy waste through inefficiency rather than through specific pathway activation. There was not a synergistic effect between OE and B3A in WAT, but their combined action increased WAT energy waste.
Resumo:
The aim of this study was to investigate the effect of combined pressure/temperature treatments (200, 400 and 600 MPa, at 20 and 40 °C) on key physical and chemical characteristics of white cabbage (Brassica oleracea L. var. capitata alba). Thermal treatment (blanching) was also investigated and compared with high-pressure processing (HPP). HPP at 400 MPa and 20–40 °C caused significantly larger colour changes compared to any other pressure or thermal treatment. All pressure treatments induced a softening effect, whereas blanching did not significantly alter texture. Both blanching and pressure treatments resulted in a reduction in the levels of ascorbic acid, effect that was less pronounced for blanching and HPP at 600 MPa and 20–40 °C. HPP at 600 MPa resulted in significantly higher total phenol content, total antioxidant capacity and total isothiocyanate content compared to blanching. In summary, the colour and texture of white cabbage were better preserved by blanching. However, HPP at 600 MPa resulted in significantly higher levels of phytochemical compounds. The results of this study suggest that HPP may represent an attractive technology to process vegetable-based food products that better maintains important aspects related to the content of health-promoting compounds. This may be of particular relevance to the food industry sector involved in the development of convenient novel food products with excellent functional properties
Resumo:
We studied the variations caused by stress in lipoprotein lipase (LPL) activity, LPL-mRNA, and local blood flow in LPL-rich tissues in the rat. Stress was produced by body immobilization (Immo): the rat's limbs were taped to metal mounts, and its head was placed in a plastic tube. Chronic stress (2 h daily of Immo) decreased total LPL activity in mesenteric and epididymal white adipose tissue (WAT) and was accompanied by a weight reduction of these tissues. In limb muscle, heart, and adrenals, total LPL activity and mRNA levels increased, and, in plasma, LPL activity and mass also increased. Acute stress (30-min Immo) caused a decrease in total LPL activity only in retroperitoneal WAT and an increase in preheparin plasma active LPL, but the overall weight of this tissue did not vary significantly. We propose an early release of the enzyme from this tissue into the bloodstream by some unknown extracellular pathways or other local mechanisms. These changes in this key energy-regulating enzyme are probably induced by catecholamines. They modify the flow of energy substrates between tissues, switching the WAT from importer to exporter of free fatty acids and favoring the uptake by muscle of circulating triacylglycerides for energy supply. Moreover, we found that acute stress almost doubled blood flow in all WAT studied, favoring the export of free fatty acids.
Resumo:
Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.