2 resultados para Voo
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Virgin olive oil (VOO) is considered to be one of the main components responsible for the health benefits of the Mediterranean diet, particularly against atherosclerosis where peripheral blood mononuclear cells (PBMNCs) play a crucial role in atherosclerosis development and progression. The objective of this article was to identify the PBMNC genes that respond to VOO consumption in order to ascertain the molecular mechanisms underlying the beneficial action of VOO in the prevention of atherosclerosis. Gene expression profiles of PBMNCs from healthy individuals were examined in pooled RNA samples by microarrays after 3 weeks of moderate and regular consumption of VOO, as the main fat source in a diet controlled for antioxidant content. Gene expression was verified by qPCR. The response to VOO consumption was confirmed for individual samples (n = 10) by qPCR for 10 upregulated genes (ADAM17, ALDH1A1, BIRC1, ERCC5, LIAS, OGT, PPARBP, TNFSF10, USP48, and XRCC5). Their putative role in the molecular mechanisms involved in atherosclerosis development and progression is discussed, focusing on a possible relation with VOO consumption. Our data support the hypothesis that 3 weeks of nutritional intervention with VOO supplementation, at doses common in the Mediterranean diet, can alter the expression of genes related to atherosclerosis development and progression.
Resumo:
Adherence to aMediterranean diet (MD) is associated with a reduced risk of coronary heart disease. However, themolecular mechanisms involved are not fully understood. The aim of this studywas to compare the effects of 2MD with those of a lowfat- diet (LFD) on circulating inflammatory biomarkers related to atherogenesis. A total of 516 participants included in the PreventionwithMediterraneanDiet Studywere randomized into 3 intervention groups [MD supplementedwith virgin olive oil (MD-VOO); MD supplemented with mixed nuts (MD-Nuts); and LFD]. At baseline and after 1 y, participants completed FFQ and adherence to MD questionnaires, and plasma concentrations of inflammatory markers including intercellular adhesion molecule-1(ICAM-1), IL-6, and 2 TNF receptors (TNFR60 and TNFR80) were measured by ELISA. At 1 y, the MD groups had lower plasma concentrations of IL-6, TNFR60, and TNFR80 (P , 0.05), whereas ICAM-1, TNFR60, and TNFR80 concentrations increased in the LFD group (P , 0.002). Due to between-group differences, participants in the 2 MD groups had lower plasma concentrations of ICAM-1, IL-6, TNFR60, and TNFR80 compared to those in the LFD group (P # 0.028). When participants were categorized in tertiles of 1-y changes in the consumption of selected foods, those in the highest tertile of virgin olive oil (VOO) and vegetable consumption had a lower plasma TNFR60 concentration compared with those in tertile 1 (P,0.02).Moreover, the only changes in consumption thatwere associated with 1-y changes in the geometricmean TNFR60 concentrations were those of VOO and vegetables (P = 0.01). This study suggests that a MD reduces TNFR concentrations in patients at high cardiovascular risk.