23 resultados para Visible and ultraviolet light
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this paper we face the problem of positioning a camera attached to the end-effector of a robotic manipulator so that it gets parallel to a planar object. Such problem has been treated for a long time in visual servoing. Our approach is based on linking to the camera several laser pointers so that its configuration is aimed to produce a suitable set of visual features. The aim of using structured light is not only for easing the image processing and to allow low-textured objects to be treated, but also for producing a control scheme with nice properties like decoupling, stability, well conditioning and good camera trajectory
Resumo:
Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.
Resumo:
Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.
Resumo:
The control of optical fields on the nanometre scale is becoming an increasingly important tool in many fields, ranging from channelling light delivery in photovoltaics and light emitting diodes to increasing the sensitivity of chemical sensors to single molecule levels. The ability to design and manipulate light fields with specific frequency and space characteristics is explored in this project. We present an alternative realisation of Extraordinary Optical Transmission (EOT) that requires only a single aperture and a coupled waveguide. We show how this waveguide-resonant EOT improves the transmissivity of single apertures. An important technique in imaging is Near-Field Scanning Optical Microscopy (NSOM); we show how waveguide-resonant EOT and the novel probe design assist in improving the efficiency of NSOM probes by two orders of magnitude, and allow the imaging of single molecules with an optical resolution of as good as 50 nm. We show how optical antennas are fabricated into the apex of sharp tips and can be used in a near-field configuration.
Resumo:
We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.
Resumo:
This line of research of my group intends to establish a Silicon technological platform in the field of photonics allowing the development of a wide set of applications. Particularly, what is still lacking in Silicon Photonics is an efficient and integrable light source such an LED or laser. Nanocrystals in silicon oxide or nitride matrices have been recently demonstrated as competitive materials for both active components (electrically and optically driven light emitters and optical amplifiers) and passive ones (waveguides and modulators). The final goal is the achievement of a complete integration of electronic and optical functions in the same CMOS chip. The first part of this paper will introduce the structural and optical properties of LEDs fabricated from silicon nanostructures. The second will treat the interaction of such nanocrystals with rare-earth elements (Er), which lead to an efficient hybrid system emitting in the third window of optical fibers. I will present the fabrication and assessment of optical waveguide amplifiers at 1.54 ¿m for which we have been able to demonstrate recently optical gain in waveguides made from sputtered silicon suboxide materials.
Resumo:
The equivalence between the covariant and the noncovariant versions of a constrained system is shown to hold after quantization in the framework of the field-antifield formalism. Our study covers the cases of electromagnetism and Yang-Mills fields and sheds light on some aspects of the Faddeev-Popov method, for both the covariant and noncovariant approaches, which have not been fully clarified in the literature.
Resumo:
To determine self‐consistently the time evolution of particle size and their number density in situ multi‐angle polarization‐sensitive laser light scattering was used. Cross‐polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135° and ex situ transmission electronic microscopy analysis demonstrate the existence of nonspherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross‐polarization intensities is accompanied by low‐frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian free molecule coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian free molecule coagulation model including a log‐normal particle size distribution.
Resumo:
The equivalence between the covariant and the noncovariant versions of a constrained system is shown to hold after quantization in the framework of the field-antifield formalism. Our study covers the cases of electromagnetism and Yang-Mills fields and sheds light on some aspects of the Faddeev-Popov method, for both the covariant and noncovariant approaches, which have not been fully clarified in the literature.
Resumo:
In this work, the calcium-induced aggregation of phosphatidylserine liposomes is probed by means of the analysis of the kinetics of such process as well as the aggregate morphology. This novel characterization of liposome aggregation involves the use of static and dynamic light-scattering techniques to obtain kinetic exponents and fractal dimensions. For salt concentrations larger than 5 mM, a diffusion-limited aggregation regime is observed and the Brownian kernel properly describes the time evolution of the diffusion coefficient. For slow kinetics, a slightly modified multiple contact kernel is required. In any case, a time evolution model based on the numerical resolution of Smoluchowski's equation is proposed in order to establish a theoretical description for the aggregating system. Such a model provides an alternative procedure to determine the dimerization constant, which might supply valuable information about interaction mechanisms between phospholipid vesicles.
Resumo:
The volume is divided into two parts; the fi rst deals with issues related to the police, and the second addresses issues related to demonstrators and protesters. We hope that this volume will provide further insight into issues associated with policing at major events and shed light on the complexity of the organisations, motives, and strategies in play whenever protester groups are involved.
Resumo:
Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses 50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO2 films.
Resumo:
Nanoantennae show potential for photosynthesis research for two reasons; first by spatially confining light for experiments which require high spatial resolution, and second by enhancing the photon emission of single light-harvesting complexes. For effective use of nanoantennae a detailed understanding of the interaction between the nanoantenna and the light-harvesting complex is required. Here we report how the excitation and emission of multiple purple bacterial LH2s (light-harvesting complex 2) are controlled by single gold nanorod antennae. LH2 complexes were chemically attached to such antennae, and the antenna length was systematically varied to tune the resonance with respect to the LH2 absorption and emission. There are three main findings. (i) The polarization of the LH2 emission is fully controlled by the resonant nanoantenna. (ii) The largest fluorescence enhancement, of 23 times, is reached for excitation with light at λ = 850 nm, polarized along the long antenna-axis of the resonant antenna. The excitation enhancement is found to be 6 times, while the emission efficiency is increased 3.6 times. (iii) The fluorescence lifetime of LH2 depends strongly on the antenna length, with shortest lifetimes of [similar]40 ps for the resonant antenna. The lifetime shortening arises from an 11 times resonant enhancement of the radiative rate, together with a 2–3 times increase of the non-radiative rate, compared to the off-resonant antenna. The observed length dependence of radiative and non-radiative rate enhancement is in good agreement with simulations. Overall this work gives a complete picture of how the excitation and emission of multi-pigment light-harvesting complexes are influenced by a dipole nanoantenna.
Resumo:
En aquest projecte i davant de l'actual explosió en els serveis de transmissió electrònica d'informació, es pretén fer una anàlisi del sistema de xifrat DES (Data Encryption Standard), des del punt de vista instructiu perquè pugui ser utilitzat en el futur com a element d'ensenyament per facilitar la compressió del seu funcionament.