5 resultados para Viscous effects

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that wetting effects at moving contact lines have a strong impact in viscous fingering patterns. Experiments in a rotating Hele-Shaw (HS) cell, dry or prewetted, show consistent morphological differences. When the wetting fluid invades a dry region, contact angle dynamics yield a kinetic contribution to the interface pressure drop that scales with capillary number as Ca2¿3 but is significantly larger than the Park-Homsy kinetic correction. Numerical results are in very good agreement with experiments and show that standard HS equations work best for prewetted cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review recent results on dynamical aspects of viscous fingering. The Saffman¿Taylor instability is studied beyond linear stability analysis by means of a weakly nonlinear analysis and the exact determination of the subcritical branch. A series of contributions pursuing the idea of a dynamical solvability scenario associated to surface tension in analogy with the traditional selection theory is put in perspective and discussed in the light of the asymptotic theory of Tanveer and co-workers. The inherently dynamical singular effects of surface tension are clarified. The dynamical role of viscosity contrast is explored numerically. We find that the basin of attraction of the Saffman¿Taylor finger depends on viscosity contrast, and that the sensitivity to this parameter is maximal in the usual limit of high viscosity contrast. The competing attractors are identified as closed bubble solutions. We briefly report on recent results and work in progress concerning rotating Hele-Shaw flows, topological singularities and wetting effects, and also discuss future directions in the context of viscous fingering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observe dendritic patterns in fluid flow in an anisotropic Hele-Shaw cell and measure the tip shapes and trajectories of individual dendritic branches under conditions where the pattern growth appears to be dominated by surface tension anisotropy and also under conditions where kinetic effects appear dominant. In each case, the tip position depends on a power law in the time, but the exponent of this power law can vary significantly among flow realizations. Averaging many growth exponents a yields a =0.640.09 in the surface tension dominated regime and a =0.660.09 in the kinetic regime. Restricting the analysis to realizations when a is very close to 0.6 shows great regularity across pattern regimes in the coefficient of the temporal dependence of the tip trajectory.