5 resultados para Vinca alkaloid
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The marine alkaloid, Lamellarin D (Lam-D), has shown potent cytotoxicity in numerous cancer cell lines, and was recently identified as a potent topoisomerase I inhibitor. A library of open lactone analogs of Lam-D was prepared from a methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-3- carboxylate scaffold (1) by introducing various aryl groups through sequential and regioselective bromination, followed by Pd(0)-catalyzed Suzuki cross-coupling chemistry. The compounds were obtained in a 24-44% overall yield, and tested in a panel of three human tumor cell lines, MDA-MB- 231 (breast), A-549 (lung), and HT-29 (colon), to evaluate their cytotoxic potential. From these data the SAR study concluded that more than 75% of the open-chain Lam-D analogs tested showed cytotoxicity in a low micromolar GI50 range.
Resumo:
The marine alkaloid, Lamellarin D (Lam-D), has shown potent cytotoxicity in numerous cancer cell lines, and was recently identified as a potent topoisomerase I inhibitor. A library of open lactone analogs of Lam-D was prepared from a methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-3- carboxylate scaffold (1) by introducing various aryl groups through sequential and regioselective bromination, followed by Pd(0)-catalyzed Suzuki cross-coupling chemistry. The compounds were obtained in a 24-44% overall yield, and tested in a panel of three human tumor cell lines, MDA-MB- 231 (breast), A-549 (lung), and HT-29 (colon), to evaluate their cytotoxic potential. From these data the SAR study concluded that more than 75% of the open-chain Lam-D analogs tested showed cytotoxicity in a low micromolar GI50 range.
Resumo:
Scopolamine is an alkaloid widely used in medicine for its anticholinergic activity. The aim of this review is to show that metabolic engineering techniques constitute a suitable tool to improve the production of tropane alkaloids, focusing in particular on scopolamine. We present an overview of results obtained by various research groups, including our own, who have studied the overexpression of genes involved in the biosynthesis of scopolamine in different plant species that produce tropane alkaloids. Experiments carried out to improve production in hairy root cultures will also be described, as well as those attempting to biotransform hyoscyamine into scopolamine in roots and transgenic tobacco cells.
Resumo:
The Lycopodium alkaloids are a structurally diverse group of natural products isolated from Lycopodium with important biological effects for the potential treatment of cancer and severe neurodegenerative diseases. To date, full biological studies have been hampered by lack of material from natural sources. Total synthesis represents a possible solution to meet this demand as well as the most effective way to design new compounds to determine structural activity relationships and obtain more potent compounds. The aim of this chapter is to summarise the work carried out in this field so far by presenting an overview of the synthetic strategies used to access each of the four key Lycopodium alkaloid types. Particular emphasis has been placed on methods that rapidly construct each nucleus utilizing tandem reactions.
Resumo:
The Lycopodium alkaloids are a structurally diverse group of natural products isolated from Lycopodium with important biological effects for the potential treatment of cancer and severe neurodegenerative diseases. To date, full biological studies have been hampered by lack of material from natural sources. Total synthesis represents a possible solution to meet this demand as well as the most effective way to design new compounds to determine structural activity relationships and obtain more potent compounds. The aim of this chapter is to summarise the work carried out in this field so far by presenting an overview of the synthetic strategies used to access each of the four key Lycopodium alkaloid types. Particular emphasis has been placed on methods that rapidly construct each nucleus utilizing tandem reactions.