51 resultados para Vibrational spectrum of a lattice
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B 3u←C2H4X̃1 Ag band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2 D4 results to be not as good as those for C2 H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested
Resumo:
Experimental data from ultrasonic and inelastic neutron scattering measurements are analyzed for different families of Cu-based shape-memory alloys. It is shown that the transition occurs at a value, independent of composition and alloy family, of the ratio between the elastic constants associated with the two shears necessary to accomplish the lattice distortion from the bcc to the close-packed structure. The zone boundary frequency of the TA2[110] branch evaluated at the transition point (TM), weakly depends, for each family, on composition. A linear relationship between this frequency and the inverse of the elastic constant C', both quantities evaluated at TM, has been found, in agreement with the prediction of a Landau model proposed for martensitic transformations.
Resumo:
In this paper, we compute the triangular spectrum (as de fined by P. Balmer) of two classes of tensor triangulated categories which are quite common in algebraic geometry. One of them is the derived category of G-equivariant sheaves on a smooth scheme X, for a fi nite group G. The other class is the derived category of split superschemes.
Resumo:
We developed a procedure that combines three complementary computational methodologies to improve the theoretical description of the electronic structure of nickel oxide. The starting point is a Car-Parrinello molecular dynamics simulation to incorporate vibrorotational degrees of freedom into the material model. By means ofcomplete active space self-consistent field second-order perturbation theory (CASPT2) calculations on embedded clusters extracted from the resulting trajectory, we describe localized spectroscopic phenomena on NiO with an efficient treatment of electron correlation. The inclusion of thermal motion into the theoretical description allowsus to study electronic transitions that, otherwise, would be dipole forbidden in the ideal structure and results in a natural reproduction of the band broadening. Moreover, we improved the embedded cluster model by incorporating self-consistently at the complete active space self-consistent field (CASSCF) level a discrete (or direct) reaction field (DRF) in the cluster surroundings. The DRF approach offers an efficient treatment ofelectric response effects of the crystalline embedding to the electronic transitions localized in the cluster. We offer accurate theoretical estimates of the absorption spectrum and the density of states around the Fermi level of NiO, and a comprehensive explanation of the source of the broadening and the relaxation of the charge transferstates due to the adaptation of the environment
Resumo:
The complete Raman spectrum of SnO2 nanoparticles in presented and analyzed. In addition to the "classical" modes observed in the rutile structure, two other regions shown Raman activity for nanoparticles. The Raman bands in the low-frequency region are attributed to acoustic modes associated with the vibration of the individual nanoparticle as a whole. The high-frequency region is activated by surface disorder. A detailed analysis of these regions and the changes in the normal modes of SnO2 are presented as a function nanoparticle size.
Resumo:
We present a study of the influence of atomic order on the relative stability of the bcc and the 18R martensitic structures in a Cu2.96Al0.92Be0.12 crystal. Calorimetric measurements have shown that disorder increases the stability of the 18R phase, contrary to what happens in Cu-Zn-Al alloys for which it is the bcc phase that is stabilized by disordering the system. This different behavior has been explained in terms of a model recently reported. We have also proved that the entropy change at the martensitic transition is independent of the state of atomic order of the crystal, as predicted theoretically. Our results suggest that differences in the vibrational spectrum of the crystal due to different states of atomic order must be equal in the bcc and in the close-packed phases.
Resumo:
Time-dependent correlation functions and the spectrum of the transmitted light are calculated for absorptive optical bistability taking into account phase fluctuations of the driving laser. These fluctuations are modeled by an extended phase-diffusion model which introduces non-Markovian effects. The spectrum is obtained as a superposition of Lorentzians. It shows qualitative differences with respect to the usual calculation in which phase fluctuations of the driving laser are neglected.
Resumo:
We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring
Resumo:
We obtain the next-to-next-to-leading-logarithmic renormalization-group improvement of the spectrum of hydrogenlike atoms with massless fermions by using potential NRQED. These results can also be applied to the computation of the muonic hydrogen spectrum where we are able to reproduce some known double logarithms at O(m¿s6). We compare with other formalisms dealing with logarithmic resummation available in the literature.
Resumo:
We calculate the chemical potential ¿0 and the effective mass m*/m3 of one 3He impurity in liquid 4He. First a variational wave function including two- and three-particle dynamical correlations is adopted. Triplet correlations bring the computed values of ¿0 very close to the experimental results. The variational estimate of m*/m3 includes also backflow correlations between the 3He atom and the particles in the medium. Different approximations for the three-particle distribution function give almost the same values for m*/m3. The variational approach underestimates m*/m3 by ~10% at all of the considered densities. Correlated-basis perturbation theory is then used to improve the wave function to include backflow around the particles of the medium. The perturbative series built up with one-phonon states only is summed up to infinite order and gives results very close to the variational ones. All the perturbative diagrams with two independent phonons have then been summed to compute m*/m3. Their contribution depends to some extent on the form used for the three-particle distribution function. When the scaling approximation is adopted, a reasonable agreement with the experimental results is achieved.
Resumo:
Background: Limited data on a short series of patients suggest that lymphocytic enteritis (classically considered as latent coeliac disease) may produce symptoms of malabsorption, although the true prevalence of this situation is unknown. Serological markers of coeliac disease are of little diagnostic value in identifying these patients. Aims: To evaluate the usefulness of human leucocyte antigen-DQ2 genotyping followed by duodenal biopsy for the detection of gluten-sensitive enteropathy in first-degree relatives of patients with coeliac disease and to assess the clinical relevance of lymphocytic enteritis diagnosed with this screening strategy. Patients and methods: 221 first-degree relatives of 82 DQ2+ patients with coeliac disease were consecutively included. Duodenal biopsy (for histological examination and tissue transglutaminase antibody assay in culture supernatant) was carried out on all DQ2+ relatives. Clinical features, biochemical parameters and bone mineral density were recorded. Results: 130 relatives (58.8%) were DQ2+, showing the following histological stages: 64 (49.2%) Marsh 0; 32 (24.6%) Marsh I; 1 (0.8%) Marsh II; 13 (10.0%) Marsh III; 15.4% refused the biopsy. 49 relatives showed gluten sensitive enteropathy, 46 with histological abnormalities and 3 with Marsh 0 but positive tissue transglutaminase antibody in culture supernatant. Only 17 of 221 relatives had positive serological markers. Differences in the diagnostic yield between the proposed strategy and serology were significant (22.2% v 7.2%, p<0.001). Relatives with Marsh I and Marsh II¿III were more often symptomatic (56.3% and 53.8%, respectively) than relatives with normal mucosa (21.1%; p=0.002). Marsh I relatives had more severe abdominal pain (p=0.006), severe distension (p=0.047) and anaemia (p=0.038) than those with Marsh 0. The prevalence of abnormal bone mineral density was similar in relatives with Marsh I (37%) and Marsh III (44.4%). Conclusions: The high number of symptomatic patients with lymphocytic enteritis (Marsh I) supports the need for a strategy based on human leucocyte antigen-DQ2 genotyping followed by duodenal biopsy in relatives of patients with coeliac disease and modifies the current concept that villous atrophy is required to prescribe a gluten-free diet.
Resumo:
The microquasar 1E 1740.7-2942 is a source located in the direction of the Galactic Center. It has been detected at X-rays, soft gamma-rays, and in the radio band, showing an extended radio component in the form of a double-sided jet. Although no optical counterpart has been found so far for 1E 1740.7-2942, its X-ray activity strongly points to a galactic nature. Aims.We aim to improve our understanding of the hard X-ray and gamma-ray production in the system, exploring whether the jet can emit significantly at high energies under the light of the present knowledge. Methods.We have modeled the source emission, from radio to gamma-rays, with a cold-matter dominated jet model. INTEGRAL data combined with radio and RXTE data, as well as EGRET and HESS upper-limits, are used to compare the computed and the observed spectra. Results.From our modeling, we find out that jet emission cannot explain the high fluxes observed at hard X-rays without violating at the same time the constraints from the radio data, favoring the corona origin of the hard X-rays. Also, 1E 1740.7-2942 might be detected by GLAST or AGILE at GeV energies, and by HESS and HESS-II beyond 100 GeV, with the spectral shape likely affected by photon-photon absorption in the disk and corona photon fields.
Resumo:
Todos los cuerpos emiten luz espontaneamente al ser calentados. El espectro de radiacion es una funcion de la temperatura y el material. Sin embargo, la mayoria de los materiales irradia, en general, en una banda espectral amplia. Algunas matereiales, por el contrario, son capaces de concentrar la radiacion termica en una banda espectral mucho mas estrecha. Estos materiales se conocen como emisores selectivos y su uso tiene un profundo impacto en la eficiencia de sistemas sistemas tales como iluminacion y conversion de energia termofotovoltaica. De los emisores selectivos se espera que sean capaces de operar a altas temperaturas y que emitan en una banda espectral muy concisa. Uno de los metodos mas prometedores para controlar y disenar el espectro de emision termico es la utilizacion de cristales fotonicos. Los cristales fotonicos son estructuras periodicas artificiales capaces de controlar y confinar la luz de formas sin precedentes. Sin embargo, la produccion de dichas estructuras con grandes superficies y capaces de soportar altas temperaturas sigue siendo una dificil tarea. Este trabajo esta dedicada al estudio de las propiedades de emision termica de estructuras 3D de silicio macroporoso en el rango espectral mid-IR (2-30 m). En particular, este trabajo se enfoca en reducir la elevada emisividad del silicio cristalino. Las muestras estudiadas en este trabajo tienen una periodicidad de 4 m, lo que limitan los resultados obtenidos a la banda del infrarrojo medio, aunque estructuras mucho mas pequenas son tecnologicamente realizables con el metodo de fabricacion utilizado. Hemos demostrado que el silicio macroporoso 3D puede inhibir completamente la emision termica en su superficie. Mas aun, esta banda se puede ajustar en un amplio margen mediante pequenos cambios durante la formacion de los macroporos. Tambien hemos demostrado que tanto el ancho como la frecuencia de la banda de inhibicion se puede doblar mediante la aplicacion de tecnicas de postprocesado adecuadas. Finalmente hemos mostrado que es posible crear bandas de baja emisividad arbitrariamente anchas mediante estructuras macroporosas aperiodicas.