19 resultados para VENTRAL SUBICULUM

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonergic and endocannabinoid systems are important substrates for the control of emotional behavior and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared to wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the dorsal raphe nucleus, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an overexpression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the dorsal raphe nucleus by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reelin gene encodes an extracellular protein that is crucial for neuronal migration in laminated brain regions. To gain insights into the functions of Reelin, we performed high-resolution in situ hybridization analyses to determine the pattern of reelin expression in the developing forebrain of the mouse. We also performed double-labeling studies with several markers, including calcium-binding proteins, GAD65/67, and neuropeptides, to characterize the neuronal subsets that express reelin transcripts. reelinexpression was detected at embryonic day 10 and later in the forebrain, with a distribution that is consistent with the prosomeric model of forebrain regionalization. In the diencephalon, expression was restricted to transverse and longitudinal domains that delineated boundaries between neuromeres. During embryogenesis,reelin was detected in the cerebral cortex in Cajal-Retzius cells but not in the GABAergic neurons of layer I. At prenatal stages, reelin was also expressed in the olfactory bulb, and striatum and in restricted nuclei in the ventral telencephalon, hypothalamus, thalamus, and pretectum. At postnatal stages, reelin transcripts gradually disappeared from Cajal-Retzius cells, at the same time as they appeared in subsets of GABAergic neurons distributed throughout neocortical and hippocampal layers. In other telencephalic and diencephalic regions,reelin expression decreased steadily during the postnatal period. In the adult, there was prominent expression in the olfactory bulb and cerebral cortex, where it was restricted to subsets of GABAergic interneurons that co-expressed calbindin, calretinin, neuropeptide Y, and somatostatin. This complex pattern of cellular and regional expression is consistent with Reelin having multiple roles in brain development and adult brain function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent single-cell studies in monkeys (Romo et al., 2004) show that the activity of neurons in the ventral premotor cortex covaries with the animal's decisions in a perceptual comparison task regarding the frequency of vibrotactile events. The firing rate response of these neurons was dependent only on the frequency differences between the two applied vibrations, the sign of that difference being the determining factor for correct task performance. We present a biophysically realistic neurodynamical model that can account for the most relevant characteristics of this decision-making-related neural activity. One of the nontrivial predictions of this model is that Weber's law will underlie the perceptual discrimination behavior. We confirmed this prediction in behavioral tests of vibrotactile discrimination in humans and propose a computational explanation of perceptual discrimination that accounts naturally for the emergence of Weber's law. We conclude that the neurodynamical mechanisms and computational principles underlying the decision-making processes in this perceptual discrimination task are consistent with a fluctuation-driven scenario in a multistable regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes the ultrastructure of the mature spermatozoon of Lecithocladium excisum (Rudolphi, 1819) (Digenea: Hemiuroidea: Hemiuridae) from the stomach of the marine teleost Scomber japonicus Houttuyn (Scombridae) captured in the Atlantic Ocean, off Dakar (Senegal). The ultrastructural organization of the spermatozoon of L. excisum follows the general model described in most digeneans. It presents two axonemes of the 9+'1' pattern of the Trepaxonemata, nucleus, mitochondrion and parallel cortical microtubules, among other characters. However, some particularities of the spermatozoon of L. excisum are (i) the presence of a membranous ornamentation not associated with cortical microtubules in its anterior extremity, (ii) the presence of a very reduced number of cortical microtubules located only in the ventral side of the spermatozoon and (iii) the absence of several structures described in most digeneans such as spine-like bodies and cytoplasmic expansions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes the ultrastructure of the mature spermatozoon of Lecithocladium excisum (Rudolphi, 1819) (Digenea: Hemiuroidea: Hemiuridae) from the stomach of the marine teleost Scomber japonicus Houttuyn (Scombridae) captured in the Atlantic Ocean, off Dakar (Senegal). The ultrastructural organization of the spermatozoon of L. excisum follows the general model described in most digeneans. It presents two axonemes of the 9+'1' pattern of the Trepaxonemata, nucleus, mitochondrion and parallel cortical microtubules, among other characters. However, some particularities of the spermatozoon of L. excisum are (i) the presence of a membranous ornamentation not associated with cortical microtubules in its anterior extremity, (ii) the presence of a very reduced number of cortical microtubules located only in the ventral side of the spermatozoon and (iii) the absence of several structures described in most digeneans such as spine-like bodies and cytoplasmic expansions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vertebrates, early brain development takes place at the expanded anterior end of the neural tube. After closure of the anterior neuropore, the brain wall forms a physiologically sealed cavity that encloses embryonic cerebrospinal fluid (E-CSF), a complex and protein-rich fluid that is initially composed of trapped amniotic fluid. E-CSF has several crucial roles in brain anlagen development. Recently, we reported the presence of transient blood-CSF barrier located in the brain stem lateral to the ventral midline, at the mesencephalon and prosencephalon level, in chick and rat embryos by transporting proteins, water, ions and glucose in a selective manner via transcellular routes. To test the actual relevance of the control of E-CSF composition and homeostasis on early brain development by this embryonic blood-CSF barrier, we block the activity of this barrier by treating the embryos with 6-aminonicotinamide gliotoxin (6-AN). We demonstrate that 6-AN treatment in chick embryos blocks protein transport across the embryonic blood-CSF barrier, and that the disruption of the barrier properties is due to the cease transcellular caveolae transport, as detected by CAV-1 expression cease. We also show that the lack of protein transport across the embryonic blood-CSF barrier influences neuroepithelial cell survival, proliferation and neurogenesis, as monitored by neurepithelial progenitor cells survival, proliferation and neurogenesis. The blockage of embryonic blood-CSF transport also disrupts water influx to the E-CSF, as revealed by an abnormal increase in brain anlagen volume. These experiments contribute to delineate the actual extent of this blood-CSF embryonic barrier controlling E-CSF composition and homeostasis and the actual important of this control for early brain development, as well as to elucidate the mechanism by which proteins and water are transported thought transcellular routes across the neuroectoderm, reinforcing the crucial role of E-CSF for brain development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acquisition of reward and the avoidance of punishment could logically be contingent on either emitting or withholding particular actions. However,the separate pathways inthe striatumfor go and no-go appearto violatethis independence, instead coupling affect and effect. Respect for this interdependence has biased many studies of reward and punishment, so potential action- outcome valence interactions during anticipatory phases remain unexplored. In a functional magnetic resonance imaging study with healthy human volunteers, we manipulated subjects" requirement to emit or withhold an action independent from subsequent receipt of reward or avoidance of punishment. During anticipation, in the striatum and a lateral region within the substantia nigra/ventral tegmental area (SN/VTA), action representations dominated over valence representations. Moreover, we did not observe any representation associated with different state values through accumulation of outcomes, challenging a conventional and dominant association between these areas and state value representations. In contrast, a more medial sector of the SN/VTA responded preferentially to valence, with opposite signs depending on whether action was anticipatedto be emitted or withheld. This dominant influence of action requires an enriched notion of opponency between reward and punishment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nicotine (NIC), the main psychostimulant compound of smoked tobacco, exerts its effects through activation of central nicotinic acetylcholine receptors (nAChR), which become up-regulated after chronic administration. Recent work has demonstrated that the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) has affinity for nAChR and also induces up-regulation of nAChR in PC 12 cells. Tobacco and MDMA are often consumed together. In the present work we studied the in vivo effect of a classic chronic dosing schedule of MDMA in rats, alone or combined with a chronic schedule of NIC, on the density of nAChR and on serotonin reuptake transporters. MDMA induced significant decreases in [3H]paroxetine binding in the cortex and hippocampus measured 24 h after the last dose and these decreases were not modified by the association with NIC. In the prefrontal cortex, NIC and MDMA each induced significant increases in [3H]epibatidine binding (29.5 and 34.6%, respectively) with respect to saline-treated rats, and these increases were significantly potentiated (up to 72.1%) when the two drugs were associated. Also in this area, [3H]methyllycaconitine binding was increased a 42.1% with NIC + MDMA but not when they were given alone. In the hippocampus, MDMA potentiated the a7 regulatory effects of NIC (raising a 25.5% increase to 52.5%) but alone was devoid of effect. MDMA had no effect on heteromeric nAChR in striatum and a coronal section of the midbrain containing superior colliculi, geniculate nuclei, substantia nigra and ventral tegmental area. Specific immunoprecipitation of solubilised receptors suggests that the up-regulated heteromeric nAChRs contain a4 and b2 subunits. Western blots with specific a4 and a7 antibodies showed no significant differences between the groups, indicating that, as reported for nicotine, up-regulation caused by MDMA is due to post-translational events rather than increased receptor synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many aspects of human behavior are driven by rewards, yet different people are differentially sensitive to rewards and punishment. In this study, we showthat white matter microstructure inthe uncinate/inferiorfronto-occipitalfasciculus, defined byfractional anisotropy values derived from diffusion tensor magnetic resonance images, correlates with both short-term (indexed by the fMRI blood oxygenation level-dependent response to reward in the nucleus accumbens) and long-term (indexed by the trait measure sensitivity to punishment) reactivityto rewards.Moreover,traitmeasures of reward processingwere also correlatedwith reward-relatedfunctional activation in the nucleus accumbens. The white matter tract revealed by the correlational analysis connects the anterior temporal lobe with the medial and lateral orbitofrontal cortex and also supplies the ventral striatum. The pattern of strong correlations suggests an intimate relationship betweenwhitematter structure and reward-related behaviorthatmay also play a rolein a number of pathological conditions, such as addiction and pathological gambling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The meaning of a novel word can be acquired by extracting it from linguistic context. Here we simulated word learning of new words associated to concrete and abstract concepts in a variant of the human simulation paradigm that provided linguistic context information in order to characterize the brain systems involved. Native speakers of Spanish read pairs of sentences in order to derive the meaning of a new word that appeared in the terminal position of the sentences. fMRI revealed that learning the meaning associated to concrete and abstract new words was qualitatively different and recruited similar brain regions as the processing of real concrete and abstract words. In particular, learning of new concrete words selectively boosted the activation of the ventral anterior fusiform gyrus, a region driven by imageability, which has previously been implicated in the processing of concrete words.