2 resultados para Urinary organs.

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in"other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the"rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In this study, we further investigated the association of two biomarkers, CCL18 and A1AT, with bladder cancer (BCa) and evaluated the influence of potentially confounding factors in an experimental model. METHODS: In a cohort of 308 subjects (102 with BCa), urinary concentrations of CCL18 and A1AT were assessed by enzyme-linked immunosorbent assay (ELISA). In an experimental model, benign or cancerous cells, in addition to blood, were added to urines from healthy controls and analyzed by ELISA. Lastly, immunohistochemical staining for CCL18 and A1AT in human bladder tumors was performed. RESULTS: Median urinary protein concentrations of CCL18 (52.84 pg/ml vs. 11.13 pg/ml, p < 0.0001) and A1AT (606.4 ng/ml vs. 120.0 ng/ml, p < 0.0001) were significantly elevated in BCa subjects compared to controls. Furthermore, the addition of whole blood to pooled normal urine resulted in a significant increase in both CCL18 and A1AT. IHC staining of bladder tumors revealed CCL18 immunoreactivity in inflammatory cells only, and there was no significant increase in these immunoreactive cells within benign and cancerous tissue and no association with BCa grade nor stage was noted. A1AT immunoreactivity was observed in the cytoplasm of epithelia cells and intensity of immunostaining increased with tumor grade, but not tumor stage. CONCLUSIONS: Further development of A1AT as a diagnostic biomarker for BCa is warranted.