133 resultados para Upper airway space
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.
Resumo:
Objective: To compare pressure–volume (P–V) curves obtained with the Galileo ventilator with those obtained with the CPAP method in patients with ALI or ARDS receiving mechanical ventilation. P–V curves were fitted to a sigmoidal equation with a mean R2 of 0.994 ± 0.003. Lower (LIP) and upper inflection (UIP), and deflation maximum curvature (PMC) points calculated from the fitted variables showed a good correlation between methods with high intraclass correlation coefficients. Bias and limits of agreement for LIP, UIP and PMC obtained with the two methods in the same patient were clinically acceptable.
Resumo:
We prove upper pointwise estimates for the Bergman kernel of the weighted Fock space of entire functions in $L^{2}(e^{-2\phi}) $ where $\phi$ is a subharmonic function with $\Delta\phi$ a doubling measure. We derive estimates for the canonical solution operator to the inhomogeneous Cauchy-Riemann equation and we characterize the compactness of this operator in terms of $\Delta\phi$.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) | if uniformly controlled | will quantify contractivity (limit expansivity) of the flow.
Resumo:
We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt".
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Contribució al Seminari: "Les Euroregions: Experiències i aprenatges per a l’Euroregió Pirineus-Mediterrània", 15-16 de desembre de 2005
Resumo:
Report for the scientific sojourn at the Department of Information Technology (INTEC) at the Ghent University, Belgium, from january to june 2007. All-Optical Label Swapping (AOLS) forms a key technology towards the implementation of All-Optical Packet Switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the wayin which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This project studies and proposes All-Optical Label Stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this project, an Integer Lineal Program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more.
Resumo:
The purpose of this contribution is to draw a picture of the (uneven) distribution of economic activities across the states of the European Union (EU) and the consequences entailed by it. We will briefly summarize the most salient and recent contributions. Then, in the light of the economic geography theory, we will discuss the economic and social advantages and disadvantages associated with a core- periphery structure. In this sense, particular attention will be addressed to the EU financial system of Structural Funds and the effects they produced. Finally, we will formulate some suggestions, relying on the EU experience, that could be of interest to the current Brazilian regional policy.