4 resultados para Upper West Region
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Ultramafic rocks, mainly serpentinized peridotites of mantle origin, are mostly associated with the ophiolites of Mesozoic age that occur in belts along three of the margins of the Caribbean plate. The most extensive exposures are in Cuba. The ultramafic-mafic association (ophiolites) were formed and emplaced in several different tectonic environments. Mineralogical studies of the ultramafic rocks and the chemistry of the associated mafic rocks indicate that most of the ultramafic-mafic associations in both the northern and southern margins of the plate were formed in arc-related environments. There is little mantle peridotite exposed in the ophiolitic associations of the west coast of Central America, in the south Caribbean in Curacao and in the Andean belts in Colombia. In these occurrences the chemistry and age of the mafic rocks indicates that this association is mainly part of the 89 Ma Caribbean plateau province. The age of the mantle peridotites and associated ophiolites is probably mainly late Jurassic or Early Cretaceous. Emplacement of the ophiolites possibly began in the Early Cretaceous in Hispaniola and Puerto Rico, but most emplacement took place in the Late Cretaceous to Eocene (e.g. Cuba). Along the northern South America plate margin, in the Caribbean mountain belt, emplacement was by major thrusting and probably was not completed until the Oligocene or even the early Miocene. Caribbean mantle peridotites, before serpentinization, were mainly harzburgites, but dunites and lherzolites are also present. In detail, the mineralogical and chemical composition varies even within one ultramafic body, reflecting melting processes and peridotite/melt interaction in the upper mantle. At least for the northern Caribbean, uplift (postemplacement tectonics) exposed the ultramafic massifs as a land surface to effective laterization in the beginning of the Miocene. Tectonic factors, determining the uplift, exposing the peridotites to weathering varied. In the northern Caribbean, in Guatemala, Jamaica, and Hispaniola, uplift occurred as a result of transpresional movement along pre-existing major faults. In Cuba, uplift occurred on a regional scale, determined by isostatic adjustment. In the south Caribbean, uplift of the Cordillera de la Costa and Serrania del Interior exposing the peridotites, also appears to be related to strike-slip movement along the El Pilar fault system. In the Caribbean, Ni-laterite deposits are currently being mined in the central Dominican Republic, eastern Cuba, northern Venezuela and northwest Colombia. Although apparently formed over ultramafic rocks of similar composition and under similar climatic conditions, the composition of the lateritic soils varies. Factors that probably determined these differences in laterite composition are geomorphology, topography, drainage and tectonics. According to the mineralogy of principal ore-bearing phases, Dominican Ni-laterite deposits are classified as the hydrous silicate-type. The main Ni-bearing minerals are hydrated Mg-Ni silicates (serpentine and ¿garnierite¿) occurring deeper in the profile (saprolite horizon). In contrast, in the deposits of eastern Cuba, the Ni and Cooccurs mainly in the limonite zone composed of Fe hydroxides and oxides as the dominant mineralogy in the upper part of the profile, and are classified as the oxide-type.
Resumo:
Does the labor market place wage premia on jobs that involve physical strain,job, insecurity or bad regulation of hours? This paper derives bounds on themonetary returns to these job disamenities in the West German labor market.We show that in a market with dispersion in both job characteristics andwages, the average wage change of workers who switch jobs voluntarily and optfor consuming more (less) disamenities,provides an upper (lower) bound on themarket return to the disamenity. Using longitudinal information from workersin the German Socio Economic Panel, we estimate an upper bound of 5% and alower bound of 3.5% for the market return to work strain in a job.
Resumo:
The existence of fluids and partial melt in the lower crust of the seismically active Kutch rift basin (on the western continental margin of India) owing to underplating has been proposed in previous geological and geophysical studies. This hypothesis is examined using magnetotelluric (MT) data acquired at 23 stations along two profiles across Kutch Mainland Uplift and Wagad Uplift. A detailed upper crustal structure is also presented using twodimensional inversion of MT data in the Bhuj earthquake (2001) area. The prominent boundaries of reflection in the upper crust at 5, 10 and 20 km obtained in previous seismic reflection profiles correlate with conductive structures in our models. The MT study reveals 1-2 km thick Mesozoic sediments under the Deccan trap cover. The Deccan trap thickness in this region varies from a few meters to 1.5 km. The basement is shallow on the northern side compared to the south and is in good agreement with geological models as well as drilling information. The models for these profiles indicate that the thickness of sediments would further increase southwards into the Gulf of Kutch. Significant findings of the present study indicate 1) the hypocentre region of the earthquake is devoid of fluids, 2) absence of melt (that is emplaced during rifting as suggested from the passive seismological studies) in the lower crust and 3) a low resistive zone in the depth range of 5-20 km. The present MT study rules out fluidsand melt (magma) as the causative factors that triggered the Bhuj earthquake. The estimated porosity value of 0.02% will explain 100-500 ohm·m resistivity values observed in the lower crust. Based on the seismic velocities and geochemical studies, presence of garnet is inferred. The lower crust consists of basalts - probably generated by partial melting of metasomatised garnet peridotite at deeper depths in the lithosphere - and their composition might be modified by reaction with the spinel peridotites.
Resumo:
A new troglobitic species, Nesticus baeticus sp. n. (♂♀), inhabiting the karst landscapes of the high part of the Cazorla, Segura and Las Villas Natural Park (NE Jaén, Spain) where it has been found in 8 caves is diagnosed and described, its distribution and habitat are also analyzed.The new species belongs to the Iberian species group that includes Nesticus luquei, Nesticus lusitanicus and Nesticus murgis. Evolutionary relationships of the Iberian Nesticus species are discussed on the basis of morphological and molecular data (cox1 and rrnL). Arachnida, Araneae, taxonomy, description, new species, caves, Iberian Peninsula, Mediterranean basin