3 resultados para Uniform system

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colour image segmentation based on the hue component presents some problems due to the physical process of image formation. One of that problems is colour clipping, which appear when at least one of the sensor components is saturated. We have designed a system, that works for a trained set of colours, to recover the chromatic information of those pixels on which colour has been clipped. The chromatic correction method is based on the fact that hue and saturation are invariant to the uniform scaling of the three RGB components. The proposed method has been validated by means of a specific colour image processing board that has allowed its execution in real time. We show experimental results of the application of our method

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paltridge found reasonable values for the most significant climatic variables through maximizing the material transport part of entropy production by using a simple box model. Here, we analyse Paltridge's box model to obtain the energy and the entropy balance equations separately. Derived expressions for global entropy production, which is a function of the radiation field, and even its material transport component, are shown to be different from those used by Paltridge. Plausible climatic states are found at extrema of these parameters. Feasible results are also obtained by minimizing the radiation part of entropy production, in agreement with one of Planck's results, Finally, globally averaged values of the entropy flux of radiation and material entropy production are obtained for two dynamical extreme cases: an earth with uniform temperature, and an earth in radiative equilibrium at each latitudinal point

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a one dimensional formulation of the Planck-Nernst-Poisson equation to describe the dynamics of of a symmetric binary electrolyte in channels whose section is of nanometric section and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs di fusion equation and leads to a system of coupled equations for the partial densities which depends on the charge sitting at the walls in a non trivial fashion. We consider two kinds of non uniformities, those due to the spatial variation of charge distribution and those due to the shape variation of the pore and report one and three-dimensional solutions of the electrokinetic equations.