29 resultados para Tumor filodes benigno
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
El tumor vesical superficial és la neoplàsia més comuna de l’aparell genitourinari. El tractament d’elecció és la RTU vesical, però moltes vegades precisa d’adjuvància posterior, com les instil•lacions de BCG o Mitomicina C endovesicals. Aquests tractaments no estan exempts d’efectes adversos, que poden afectar la qualitat de vida dels pacients als quals se’ls administra. La qualitat de vida relacionada amb la salut és una eina important per valorar l’impacte que tenen alguns procediments terapèutics. Mitjançant qüestionaris de salut es pretén avaluar-ho. S’ha intentat crear un qüestionari que pugui utilitzar-se en la pràctica diària pels pacients que reben tractament amb quimioteràpia o immunoteràpia endovesical.
Resumo:
Es presenta un estudi retrospectiu descrivint les característiques radiològiques en una sèrie de nou casos de tumor fibrós solitari que affecta partes toves. Aquests resultats es comparen amb els resultats d’anatomia patològica i amb l’evolució clínica dels pacients
Resumo:
DNA methylation has an important impact on normal cell physiology, thus any defects in this mechanism may be related to the development of various diseases In this project we are interested in identifying epigeneticaliy modified genes, in general controlled by processes related to the DNA methylation, by means of a new strategy combining protomic and genomic analyses. First, the two Dimensional-Difference Gel Electrophoresis (2-DIGE) protein analyses of extracts obtained from HCT-116 wt and double knockout for DNMT1 and DNMT3b (DKO) cells revealed 34 proteins overexpressed in the condition of DNMTs depletion. From five genes with higher transcript lavels in DKO cells, comparing with HCT-116 wt. oniy AKR1B1, UCHLl and VIM are melhylated in HCT-116. As expected. the DNA methvlation 1s lost in DKO cells. The rneth,vl ation of VIM and UCHLl promoters in some cancer samples has already been repaired, thus further studies has been focused on AKRlBI. AKR1B1 expression due lo DNA methyiaton of promoter region seems to occur specilfically in the colon cancer cell Iines. which was confirmed in the DNA rnethylation status and expression analyses. performed on 32 different cancer cell lines (including colon, breast, lymphoma, leukemia, neuroblastoma, glioma and lung cancer cell Iines) as well as normal colon and normal lymphocytes samples. AKRIBI expression after treatments with DNA demethvlating agent (AZA) was rescued in 5 coloncancer cell lines (including genetic regulation of the candidate gene. The methylation status of the rest of the genes identified in proteomic analysis was checked by methylation specific PCR (MSP) experiment and all appeared to be unmethylated. The similar research has been done also bv means of Mecp2-null mouse model For 14 selected candidate genes the analyses of expression leveis, methylation Status and MeCP2 interaction with promoters are currently being performed.
Resumo:
Emergent molecular measurement methods, such as DNA microarray, qRTPCR, andmany others, offer tremendous promise for the personalized treatment of cancer. Thesetechnologies measure the amount of specific proteins, RNA, DNA or other moleculartargets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumorspecimens are heterogeneous; an individual specimen typically contains unknownamounts of multiple tissues types. Thus, the measured molecular concentrations resultfrom an unknown mixture of tissue types, and must be normalized to account for thecomposition of the mixture.For example, a breast tumor biopsy may contain normal, dysplastic and cancerousepithelial cells, as well as stromal components (fatty and connective tissue) and bloodand lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic andcancerous epithelial cells. The remaining tissue components serve to “contaminate”the signal of interest. The proportion of each of the tissue components changes asa function of patient characteristics (e.g., age), and varies spatially across the tumorregion. Because each of the tissue components produces a different molecular signature,and the amount of each tissue type is specimen dependent, we must estimate the tissuecomposition of the specimen, and adjust the molecular signal for this composition.Using the idea of a chemical mass balance, we consider the total measured concentrationsto be a weighted sum of the individual tissue signatures, where weightsare determined by the relative amounts of the different tissue types. We develop acompositional source apportionment model to estimate the relative amounts of tissuecomponents in a tumor specimen. We then use these estimates to infer the tissuespecificconcentrations of key molecular targets for sub-typing individual tumors. Weanticipate these specific measurements will greatly improve our ability to discriminatebetween different classes of tumors, and allow more precise matching of each patient tothe appropriate treatment
Resumo:
Report for the scientific sojourn carried out at the University of Aarhus, Denmark, from 2010 to 2012. Reprogramming of cellular metabolism is a key process during tumorigenesis. This metabolic adaptation is required in order to sustain the energetic and anabolic demands of highly proliferative cancer cells. Despite known for decades (Warburg effect), the precise molecular mechanisms regulating this switch remained unexplored. We have identify SIRT6 as a novel tumor suppressor that regulates aerobic glycolysis in cancer cells. Importantly, loss of this sirtuin in non-transformed cells leads to tumor formation without activation of known oncogenes, indicating that SIRT6 functions as a first-hit tumor suppressor. Furthermore, transformed SIRT6-deficient cells display increased glycolysis and tumor growth in vivo, suggesting that SIRT6 plays a role in both establishment and maintenance of cancer. We provide data demonstrating that the glycolytic switch towards aerobic glycolysis is the main driving force for tumorigenesis in SIRT6-deficient cells, since inhibition of glycolysis in these cells abrogates their tumorigenic potential. By using a conditional SIRT6-targeted allele, we show that deletion of SIRT6 in vivo increases the number, size and aggressiveness of tumors, thereby confirming a role of SIRT6 as a tumor suppressor in vivo. In addition, we describe a new role for SIRT6 as a regulator of ribosome biogenesis by co-repressing MYC transcriptional activity. Therefore, by repressing glycolysis and ribosomal gene expression, SIRT6 inhibits tumor establishment and progression. Further validating these data, SIRT6 is selectively downregulated in several human cancers, and expression levels of SIRT6 predict both prognosis and tumor-free survival rates, highlighting SIRT6 as a critical modulator of cancer metabolism. Our results provide a potential Achilles’ hill to tackle cancer metabolism.
Resumo:
Glioblastomas are highly diffuse, malignant tumors that have so far evaded clinical treatment. The strongly invasive behavior of cells in these tumors makes them very resistant to treatment, and for this reason both experimental and theoretical efforts have been directed toward understanding the spatiotemporal pattern of tumor spreading. Although usual models assume a standard diffusion behavior, recent experiments with cell cultures indicate that cells tend to move in directions close to that of glioblastoma invasion, thus indicating that a biasedrandom walk model may be much more appropriate. Here we show analytically that, for realistic parameter values, the speeds predicted by biased dispersal are consistent with experimentally measured data. We also find that models beyond reaction–diffusion–advection equations are necessary to capture this substantial effect of biased dispersal on glioblastoma spread
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
Surfactants are used as additives in topical pharmaceuticals and drug delivery systems. The biocompatibility of amino acid-based surfactants makes them highly suitable for use in these fields, but tests are needed to evaluate their potential toxicity. Here we addressed the sensitivity of tumor (HeLa, MCF-7) and non-tumor (3T3, 3T6, HaCaT, NCTC 2544) cell lines to the toxic effects of lysine-based surfactants by means of two in vitro endpoints (MTT and NRU). This comparative assay may serve as a reliable approach for predictive toxicity screening of chemicals prior to pharmaceutical applications. After 24-h of cell exposure to surfactants, differing toxic responses were observed. NCTC 2544 and 3T6 cell lines were the most sensitive, while both tumor cells and 3T3 fibroblasts were more resistant to the cytotoxic effects of surfactants. IC50-values revealed that cytotoxicity was detected earlier by MTT assay than by NRU assay, regardless of the compound or cell line. The overall results showed that surfactants with organic counterions were less cytotoxic than those with inorganic counterions. Our findings highlight the relevance of the correct choice and combination of cell lines and bioassays in toxicity studies for a safe and reliable screen of chemicals with potential interest in pharmaceutical industry.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
Background: The relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta). Methods: To determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses. Results: LPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha. Conclusions In view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction.
Resumo:
S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.
Resumo:
Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.