20 resultados para Transforming Growth Factor beta -- genetics
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Growth factors seem to be part of a complex cellular signalling language, in which individual growth factors are the equivalents of the letters that compose words. According to this analogy, informational content lies, not in an individual growth factor, but in the entire set of growth factors and others signals to which a cell is exposed. The ways in which growth factors exert their combinatorial effects are becoming clearer as the molecular mechanisms of growth factors actions are being investigated. A number of related extracellular signalling molecules that play widespread roles in regulating development in both invertebrates and vertebrates constitute the Fibroblast Growth Factor (FGF) and type beta Transforming Growth Factor ((TGF beta). The latest research literature about the role and fate of these Growth factors and their influence in the craniofacial bone growth ad development is reviewed
Resumo:
Growth factors seem to be part of a complex cellular signalling language, in which individual growth factors are the equivalents of the letters that compose words. According to this analogy, informational content lies, not in an individual growth factor, but in the entire set of growth factors and others signals to which a cell is exposed. The ways in which growth factors exert their combinatorial effects are becoming clearer as the molecular mechanisms of growth factors actions are being investigated. A number of related extracellular signalling molecules that play widespread roles in regulating development in both invertebrates and vertebrates constitute the Fibroblast Growth Factor (FGF) and type beta Transforming Growth Factor ((TGF beta). The latest research literature about the role and fate of these Growth factors and their influence in the craniofacial bone growth ad development is reviewed
Resumo:
En este estudio se determinó los niveles de expresión del gen TGF-β en muestras de 117 pacientes con CECC. El tejido tumoral contó con un nivel de expresión de TGF-β superior al correspondiente a las mucosas sanas. En el grupo de pacientes con unos niveles bajos de expresión del TGF-β (n=16, 13.7%) contaron con un control local de la enfermedad del 100%, y en el grupo de pacientes con unos niveles superiores al punto de corte (n=101, 86.3%), un 36.6% de los pacientes contaron con una recidiva del tumor a nivel local después de realizado el tratamiento con radioterapia o quimio-radioterapia.
Resumo:
Transforming growth factor alpha (TGF alpha) is a polypeptide, which binds to the epidermal growth factor receptor to carry out its function related to cell proliferation and differentiation. The ultrastructural localisation of TGF alpha was studied in both the proximal and the distal colon. The columnar cells, lining the surface epithelium of the proximal colon, showed a strong immunoreactivity in the polyribosomes and in the interdigitations of the lateral membrane. The columnar cells of the crypts and the goblet cells in both the proximal and the distal colon showed the immunostaining in the cis and trans cisternae of the Golgi apparatus. TGF alpha seems to be processed differently in the surface columnar cells and in the crypt columnar cells and goblet cells. Moreover, it probably has different roles in proliferation and differentiation.
Resumo:
Transforming growth factor alpha (TGF alpha) is a polypeptide, which binds to the epidermal growth factor receptor to carry out its function related to cell proliferation and differentiation. The ultrastructural localisation of TGF alpha was studied in both the proximal and the distal colon. The columnar cells, lining the surface epithelium of the proximal colon, showed a strong immunoreactivity in the polyribosomes and in the interdigitations of the lateral membrane. The columnar cells of the crypts and the goblet cells in both the proximal and the distal colon showed the immunostaining in the cis and trans cisternae of the Golgi apparatus. TGF alpha seems to be processed differently in the surface columnar cells and in the crypt columnar cells and goblet cells. Moreover, it probably has different roles in proliferation and differentiation.
Resumo:
Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/progenitor cell expansion and differentiation, and the relevance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to proliferation, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the transforming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-β mediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expansion of liver stem cells. Hedgehog family ligands are necessary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell factor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies.
Resumo:
Hepatocellular carcinoma (HCC) is a major health problem, being the sixth most common cancer world-wide. Dysregulation of the balance between proliferation and cell death represents a pro-tumorigenic principle in human hepatocarcinogenesis. This review updates the recent relevant contributions reporting molecular alterations for HCC that induce an imbalance in the regulation of apoptosis. Alterations in the expression and/or activation of p53 are frequent in HCC cells, which confer on them resistance to chemotherapeutic drugs. Many HCCs are also insensitive to apoptosis induced either by death receptor ligands, such as FasL or TRAIL, or by transforming growth factor-beta (TGF-beta). Although the expression of some pro-apoptotic genes is decreased, the balance between death and survival is dysregulated in HCC mainly due to overactivation of anti-apoptotic pathways. Indeed, some molecules involved in counteracting apoptosis, such as Bcl-XL, Mcl-1, c-IAP1, XIAP or survivin are over-expressed in HCC cells. Furthermore, some growth factors that mediate cell survival are up-regulated in HCC, as well as the molecules involved in the machinery responsible for cleavage of their pro-forms to an active peptide. The expression and/or activation of the JAK/STAT, PI3K/AKT and RAS/ERKs pathways are enhanced in many HCC cells, conferring on them resistance to apoptotic stimuli. Finally, recent evidence indicates that inflammatory processes, as well as the epithelial-mesenchymal transitions that occur in HCC cells to facilitate their dissemination, are related to cell survival. Therefore, therapeutic strategies to selectively inhibit anti-apoptotic signals in liver tumor cells have the potential to provide powerful tools to treat HCC.
Resumo:
Increased production of vasoconstrictive prostanoids, such as thromboxane A2 (TXA2 ), contributes to endothelial dysfunction and increased hepatic vascular tone in cirrhosis. TXA2 induces vasoconstriction by way of activation of the thromboxane-A2 /prostaglandin-endoperoxide (TP) receptor. This study investigated whether terutroban, a specific TP receptor blocker, decreases hepatic vascular tone and portal pressure in rats with cirrhosis due to carbon tetrachloride (CCl4 ) or bile duct ligation (BDL). Hepatic and systemic hemodynamics, endothelial dysfunction, liver fibrosis, hepatic Rho-kinase activity (a marker of hepatic stellate cell contraction), and the endothelial nitric oxide synthase (eNOS) signaling pathway were measured in CCl4 and BDL cirrhotic rats treated with terutroban (30 mg/kg/day) or its vehicle for 2 weeks. Terutroban reduced portal pressure in both models without producing significant changes in portal blood flow, suggesting a reduction in hepatic vascular resistance. Terutroban did not significantly change arterial pressure in CCl4 -cirrhotic rats but decreased it significantly in BDL-cirrhotic rats. In livers from CCl4 and BDL-cirrhotic terutroban-treated rats, endothelial dysfunction was improved and Rho-kinase activity was significantly reduced. In CCl4 -cirrhotic rats, terutroban reduced liver fibrosis and decreased alpha smooth muscle actin (α-SMA), collagen-I, and transforming growth factor beta messenger RNA (mRNA) expression without significant changes in the eNOS pathway. In contrast, no change in liver fibrosis was observed in BDL-cirrhotic rats but an increase in the eNOS pathway. CONCLUSION: Our data indicate that TP-receptor blockade with terutroban decreases portal pressure in cirrhosis. This effect is due to decreased hepatic resistance, which in CCl4 -cirrhotic rats was linked to decreased hepatic fibrosis, but not in BDL rats, in which the main mediator appeared to be an enhanced eNOS-dependent vasodilatation, which was not liver-selective, as it was associated with decreased arterial pressure. The potential use of terutroban for portal hypertension requires further investigation.
Resumo:
Genome-wide linkage studies have identified the 9q22 chromosomal region as linked with colorectal cancer (CRC) predisposition. A candidate gene in this region is transforming growth factor beta receptor 1 (TGFBR1). Investigation of TGFBR1 has focused on the common genetic variant rs11466445, a short exonic deletion of nine base pairs which results in truncation of a stretch of nine alanine residues to six alanine residues in the gene product. While the six alanine (*6A) allele has been reported to be associated with increased risk of CRC in some population based study groups this association remains the subject of robust debate. To date, reports have been limited to population-based case-control association studies, or case-control studies of CRC families selecting one affected individual per family. No study has yet taken advantage of all the genetic information provided by multiplex CRC families. Methods: We have tested for an association between rs11466445 and risk of CRC using several family-based statistical tests in a new study group comprising members of non-syndromic high risk CRC families sourced from three familial cancer centres, two in Australia and one in Spain. Results: We report a finding of a nominally significant result using the pedigree-based association test approach (PBAT; p = 0.028), while other family-based tests were non-significant, but with a p-value < 0.10 in each instance. These other tests included the Generalised Disequilibrium Test (GDT; p = 0.085), parent of origin GDT Generalised Disequilibrium Test (GDT-PO; p = 0.081) and empirical Family-Based Association Test (FBAT; p = 0.096, additive model). Related-person case-control testing using the 'More Powerful' Quasi-Likelihood Score Test did not provide any evidence for association (M-QL5; p = 0.41). Conclusions: After conservatively taking into account considerations for multiple hypothesis testing, we find little evidence for an association between the TGFBR1*6A allele and CRC risk in these families. The weak support for an increase in risk in CRC predisposed families is in agreement with recent meta-analyses of case-control studies, which estimate only a modest increase in sporadic CRC risk among 6*A allele carriers.
Resumo:
Axon morphogenesis is a complex process regulated by a variety of secreted molecules, including morphogens and growth factors, resulting in the establishment of the neuronal circuitry. Our previous work demonstrated that growth factors [Neurotrophins (NT) and Hepatocyte Growth Factor (HGF)] signal through β-catenin during axon morphogenesis. HGF signaling promotes axon outgrowth and branching by inducing β-catenin phosphorylation at Y142 and transcriptional regulation of T-Cell Factor (TCF) target genes. Here, we asked which genes are regulated by HGF signaling during axon morphogenesis. An array screening indicated that HGF signaling elevates the expression of chemokines of the CC and CXC families. In line with this, CCL7, CCL20, and CXCL2 significantly increase axon outgrowth in hippocampal neurons. Experiments using blocking antibodies and chemokine receptor antagonists demonstrate that chemokines act downstream of HGF signaling during axon morphogenesis. In addition, qPCR data demonstrates that CXCL2 and CCL5 expression is stimulated by HGF through Met/b-catenin/TCF pathway. These results identify CC family members and CXCL2 chemokines as novel regulators of axon morphogenesis downstream of HGF signaling.
Resumo:
We determined NGF involvement in MMCs and colonic motor alterations in an ovalbumin (OVA)-induced gut dysfunction model in rats. Animals received OVA (6 weeks), with/without simultaneous K252a (TrkA antagonist) treatment. MMCs, rat mast cell protease II (RMCPII) levels and colonic contractility in vitro were assessed. OVA increased MMC density and RMCPII concentration. Spontaneous contractility was similar in both groups and inhibited by K252a. Carbachol responses were increased by OVA in a K252a-independent manner. NO-synthase inhibition increased spontaneous activity in OVA-treated animals in a K252a-dependent manner. These observations support an involvement of NGF in the functional changes observed in this model.
Resumo:
The epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family involved in signal transduction and the regulation of cellular proliferation and differentiation. It is also a calmodulin-binding protein. To examine the role of calmodulin in the regulation of EGFR, the effect of calmodulin antagonist, W-13, on the intracellular trafficking of EGFR and the MAPK signaling pathway was analyzed. W-13 did not alter the internalization of EGFR but inhibited its recycling and degradation, thus causing the accumulation of EGF and EGFR in enlarged early endosomal structures. In addition, we demonstrated that W-13 stimulated the tyrosine phosphorylation of EGFR and consequent recruitment of Shc adaptor protein with EGFR, presumably through inhibition of the calmodulin-dependent protein kinase II (CaM kinase II). W-13¿mediated EGFR phosphorylation was blocked by metalloprotease inhibitor, BB94, indicating a possible involvement of shedding in this process. However, MAPK activity was decreased by W-13; dissection of this signaling pathway showed that W-13 specifically interferes with Raf-1 activity. These data are consistent with the regulation of EGFR by calmodulin at several steps of the receptor signaling and trafficking pathways.
Resumo:
Background and aims: The extent and molecular mechanisms governing plasma extravasation and formation of ascites in cirrhosis are unknown. Vascular endothelial growth factor-A (VEGF-A) and angiopoietin-2 (Ang-2) are endogenous substances with powerful vascular permeability effects. We assessed regional blood flow, vascular leakage, mRNA and tissular expression of VEGF-A and Ang-2 and vascular permeability following VEGF receptor 2 blockade in control and cirrhotic rats to define the vascular territories showing altered vascular permeability in cirrhosis and to determine whether VEGF-A and Ang-2 are involved in this phenomenon. Methods: Arterial blood flow was analysed with the coloured microsphere method. Vascular leakage was measured and visualised with the dye Evan¿s Blue and colloidal carbon techniques, respectively. VEGF-A and Ang-2 expression were determined by real-time polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. The effect on vascular permeability induced by VEGFR2 blockade was assessed by administration of the receptor inhibitor SU11248. Results: Arterial blood flow was increased in the mesentery, pancreas and small intestine but not in the kidney and spleen of cirrhotic rats as compared to controls. Increased vascular leakage was observed in the mesentery and liver, where colloidal carbon spread from microvessels to the adjacent fibrotic tracts. Increased hepatic and mesenteric expression of VEGF-A and Ang-2 was found in cirrhotic rats as compared to controls. Blockade of VEGFR2 markedly reduced hepatic and mesenteric vascular leakage in cirrhotic rats. Conclusions: Enhanced endothelial permeability is restricted to the hepatic and mesenteric vascular beds in cirrhotic rats with ascites and VEGF-A and Ang-2 are key factors in the signalling pathways regulating this dysfunction.
Resumo:
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 1820 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.