10 resultados para Toll-Like Receptor 9
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Previous studies have shown that rat intestinal immunoglobulin A (IgA) concentration and lymphocyte composition of the intestinal immune system were influenced by a highly enriched cocoa diet. The aim of this study was to dissect the mechanisms by which a long-term high cocoa intake was capable of modifying gut secretory IgA in Wistar rats. After 7 weeks of nutritional intervention, Peyer's patches, mesenteric lymph nodes and the small intestine were excised for gene expression assessment of IgA, transforming growth factor ß, C-C chemokine receptor-9 (CCR9), interleukin (IL)-6, CD40, retinoic acid receptors (RAR¿ and RARß), C-C chemokine ligand (CCL)-25 and CCL28 chemokines, polymeric immunoglobulin receptor and toll-like receptors (TLR) expression by real-time polymerase chain reaction. As in previous studies, secretory IgA concentration decreased in intestinal wash and fecal samples after cocoa intake. Results from the gene expression showed that cocoa intake reduced IgA and IL¿6 in Peyer's patches and mesenteric lymph nodes, whereas in small intestine, cocoa decreased IgA, CCR9, CCL28, RAR¿ and RARß. Moreover, cocoa-fed animals presented an altered TLR expression pattern in the three compartments studied. In conclusion, a high-cocoa diet down-regulated cytokines such as IL-6, which is required for the activation of B cells to become IgA-secreting cells, chemokines and chemokine receptors, such as CCL28 and CCR9 together with RAR¿ and RARß, which are involved in the gut homing of IgA-secreting cells. Moreover, cocoa modified the cross-talk between microbiota and intestinal cells as was detected by an altered TLR pattern. These overall effects in the intestine may explain the intestinal IgA down-regulatory effect after the consumption of a long-term cocoa-enriched diet.
Resumo:
Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG and OMgp, share two common neuronal receptors: NgR1, together with its co-receptors (p75(NTR), TROY and Lingo-1), and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study during in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes such as development, neuronal homeostasis, plasticity and neurodegeneration.
Resumo:
Background: Toll-like receptors (TLRs) are critical components for host pathogen recognition and variants in genes participating in this response influence susceptibility to infections. Recently, TLR1 gene polymorphisms have been found correlated with whole blood hyper-inflammatory responses to pathogen-associated molecules and associated with sepsis-associated multiorgan dysfunction and acute lung injury (ALI). We examined the association of common variants of TLR1 gene with sepsis-derived complications in an independent study and with serum levels for four inflammatory biomarker among septic patients. Methodology/Principal Findings: Seven tagging single nucleotide polymorphisms of the TLR1 gene were genotyped in samples from a prospective multicenter case-only study of patients with severe sepsis admitted into a network of intensive care units followed for disease severity. Interleukin (IL)-1 b, IL-6, IL-10, and C-reactive protein (CRP) serum levels were measured at study entry, at 48 h and at 7th day. Alleles -7202G and 248Ser, and the 248Ser-602Ile haplotype were associated with circulatory dysfunction among severe septic patients (0.001<=p <= 0.022), and with reduced IL-10 (0.012<= p <=0.047) and elevated CRP (0.011<= p <=0.036) serum levels during the first week of sepsis development. Additionally, the -7202GG genotype was found to be associated with hospital mortality (p =0.017) and ALI (p =0.050) in a combined analysis with European Americans, suggesting common risk effects among studies Conclusions/Significance: These results partially replicate and extend previous findings, supporting that variants of TLR1 gene are determinants of severe complications during sepsis.
Resumo:
Interaction between host cells and microbes is known as crosstalk. Among other mechanisms, this takes place when certain molecules of the micro-organisms are recognized by the toll-like receptors (TLRs) in the body cells, mainly in the intestinal epithelial cells and in the immune cells. TLRs belong to the pattern-recognition receptors and represent the first line of defense against pathogens, playing a pivotal role in both innate and adaptive immunity. Dysregulation in the activity of such receptors can lead to the development of chronic and severe inflammation as well as immunological disorders. Among components present in the diet, flavonoids have been suggested as antioxidant dietary factors able to modulate TLR-mediated signaling pathways. This review focuses on the molecular targets involved in the modulatory action of flavonoids on TLR-mediated signaling pathways, providing an overview of the mechanisms involved in such action. Particular flavonoids have been able to modify the composition of the microbiota, to modulate TLR gene and protein expression, and to regulate the downstream signaling molecules involved in the TLR pathway. These synergistic mechanisms suggest the role of some flavonoids in the preventive effect on certain chronic diseases.
Resumo:
Interaction between host cells and microbes is known as crosstalk. Among other mechanisms, this takes place when certain molecules of the micro-organisms are recognized by the toll-like receptors (TLRs) in the body cells, mainly in the intestinal epithelial cells and in the immune cells. TLRs belong to the pattern-recognition receptors and represent the first line of defense against pathogens, playing a pivotal role in both innate and adaptive immunity. Dysregulation in the activity of such receptors can lead to the development of chronic and severe inflammation as well as immunological disorders. Among components present in the diet, flavonoids have been suggested as antioxidant dietary factors able to modulate TLR-mediated signaling pathways. This review focuses on the molecular targets involved in the modulatory action of flavonoids on TLR-mediated signaling pathways, providing an overview of the mechanisms involved in such action. Particular flavonoids have been able to modify the composition of the microbiota, to modulate TLR gene and protein expression, and to regulate the downstream signaling molecules involved in the TLR pathway. These synergistic mechanisms suggest the role of some flavonoids in the preventive effect on certain chronic diseases.
Resumo:
Rationale: Acute behavioural effects and motivational responses induced by nicotine can be modulated by the endocannabinoid system supporting the existence of a physiological interaction between these two systems. Objectives: The present study was designed to examine the possible involvement of the cannabinoid system in the anxiolytic- and anxiogenic-like responses induced by nicotine in mice. Methods: Animals were only exposed once to nicotine. The acute administration of low (0.05, sc) or high (0.8 mg/kg, sc) doses of nicotine produced opposite effects in the elevated plus-maze, i.e., anxiolytic- and anxiogenic-like responses, respectively. The effects of the pretreatment with the CB1 cannabinoid receptor antagonist, rimonabant (0.25, 0.5 and 1 mg/kg, ip), and the cannabinoid agonist, 9-tetrahydrocannabinol (0.1 mg/kg, ip), were evaluated on the anxiolytic- and anxiogenic-like responses induced by nicotine. Results: Rimonabant completely abolished nicotine-induced anxiolytic-like effects and increased the anxiogenic-like responses of nicotine, suggesting an involvement of CB1 receptors in these behavioural responses. On the other hand, 9-tetrahydrocannabinol failed to modify nicotine anxiolytic-like responses, but attenuated its anxiogenic-like effects. In addition the association of non-effective doses of 9-tetrahydrocannabinol and nicotine produced clear anxiolytic-like responses. Conclusions: These results demonstrate that the endogenous cannabinoid system is involved in the regulation of nicotine anxiety-like behaviour in mice, and provide new findings to support the use of cannabinoid antagonists in the treatment of tobacco addiction.
Resumo:
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.
Resumo:
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.
Resumo:
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.
Resumo:
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.