13 resultados para Time Dependant Multiple Random Cipher Code (TDMRC Code)

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention on the interplay between topological disorder and synchronization features of networks. First, we analyze synchronization time T in random networks, and find a scaling law which relates T to network connectivity. Then, we compare synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than a disordered network. This fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[cat] En aquest treball s'analitza l'efecte que comporta l'introducció de preferències inconsistents temporalment sobre les decisions òptimes de consum, inversió i compra d'assegurança de vida. En concret, es pretén recollir la creixent importància que un individu dóna a la herència que deixa i a la riquesa disponible per a la seva jubilació al llarg de la seva vida laboral. Amb aquesta finalitat, es parteix d'un model estocàstic en temps continu amb temps final aleatori, i s'introdueix el descompte heterogeni, considerant un agent amb una distribució de vida residual coneguda. Per tal d'obtenir solucions consistents temporalment es resol una equació de programació dinàmica no estàndard. Per al cas de funcions d'utilitat del tipus CRRA i CARA es troben solucions explícites. Finalment, els resultats obtinguts s'il·lustren numèricament.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[cat] En aquest treball s'analitza l'efecte que comporta l'introducció de preferències inconsistents temporalment sobre les decisions òptimes de consum, inversió i compra d'assegurança de vida. En concret, es pretén recollir la creixent importància que un individu dóna a la herència que deixa i a la riquesa disponible per a la seva jubilació al llarg de la seva vida laboral. Amb aquesta finalitat, es parteix d'un model estocàstic en temps continu amb temps final aleatori, i s'introdueix el descompte heterogeni, considerant un agent amb una distribució de vida residual coneguda. Per tal d'obtenir solucions consistents temporalment es resol una equació de programació dinàmica no estàndard. Per al cas de funcions d'utilitat del tipus CRRA i CARA es troben solucions explícites. Finalment, els resultats obtinguts s'il·lustren numèricament.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generalization of simple correspondence analysis, for two categorical variables, to multiple correspondence analysis where they may be three or more variables, is not straighforward, both from a mathematical and computational point of view. In this paper we detail the exact computational steps involved in performing a multiple correspondence analysis, including the special aspects of adjusting the principal inertias to correct the percentages of inertia, supplementary points and subset analysis. Furthermore, we give the algorithm for joint correspondence analysis where the cross-tabulations of all unique pairs of variables are analysed jointly. The code in the R language for every step of the computations is given, as well as the results of each computation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Time scale parametric spike train distances like the Victor and the van Rossum distancesare often applied to study the neural code based on neural stimuli discrimination.Different neural coding hypotheses, such as rate or coincidence coding,can be assessed by combining a time scale parametric spike train distance with aclassifier in order to obtain the optimal discrimination performance. The time scalefor which the responses to different stimuli are distinguished best is assumed to bethe discriminative precision of the neural code. The relevance of temporal codingis evaluated by comparing the optimal discrimination performance with the oneachieved when assuming a rate code.We here characterize the measures quantifying the discrimination performance,the discriminative precision, and the relevance of temporal coding. Furthermore,we evaluate the information these quantities provide about the neural code. Weshow that the discriminative precision is too unspecific to be interpreted in termsof the time scales relevant for encoding. Accordingly, the time scale parametricnature of the distances is mainly an advantage because it allows maximizing thediscrimination performance across a whole set of measures with different sensitivitiesdetermined by the time scale parameter, but not due to the possibility toexamine the temporal properties of the neural code.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We focus on full-rate, fast-decodable spaceâtime block codes (STBCs) for 2 x 2 and 4 x 2 multiple-input multiple-output (MIMO) transmission. We first derive conditions and design criteria for reduced-complexity maximum-likelihood (ML) decodable 2 x 2 STBCs, and we apply them to two families of codes that were recently discovered. Next, we derive a novel reduced-complexity 4 x 2 STBC, and show that it outperforms all previously known codes with certain constellations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The 2Ã2 MIMO profiles included in Mobile WiMAX specifications are Alamoutiâs space-time code (STC) fortransmit diversity and spatial multiplexing (SM). The former hasfull diversity and the latter has full rate, but neither of them hasboth of these desired features. An alternative 2Ã2 STC, which is both full rate and full diversity, is the Golden code. It is the best known 2Ã2 STC, but it has a high decoding complexity. Recently, the attention was turned to the decoder complexity, this issue wasincluded in the STC design criteria, and different STCs wereproposed. In this paper, we first present a full-rate full-diversity2Ã2 STC design leading to substantially lower complexity ofthe optimum detector compared to the Golden code with only a slight performance loss. We provide the general optimized form of this STC and show that this scheme achieves the diversitymultiplexing frontier for square QAM signal constellations. Then, we present a variant of the proposed STC, which provides a further decrease in the detection complexity with a rate reduction of 25% and show that this provides an interesting trade-off between the Alamouti scheme and SM.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Multiple-input multiple-output (MIMO) techniques have become an essential part of broadband wireless communications systems. For example, the recently developed IEEE 802.16e specifications for broadband wireless access include three MIMOprofiles employing 2Ã2 space-time codes (STCs), and two of these MIMO schemes are mandatory on the downlink of Mobile WiMAX systems. One of these has full rate, and the other has full diversity, but neither of them has both of the desired features. The third profile, namely, Matrix C, which is not mandatory, is both a full rate and a full diversity code, but it has a high decoder complexity. Recently, the attention was turned to the decodercomplexity issue and including this in the design criteria, several full-rate STCs were proposed as alternatives to Matrix C. In this paper, we review these different alternatives and compare them to Matrix C in terms of performances and the correspondingreceiver complexities.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Silver Code (SilC) was originally discovered in [1â4] for 2Ã2 multiple-input multiple-output (MIMO) transmission. It has non-vanishing minimum determinant 1/7, slightly lower than Golden code, but is fast-decodable, i.e., it allows reduced-complexity maximum likelihood decoding [5â7]. In this paper, we present a multidimensional trellis-coded modulation scheme for MIMO systems [11] based on set partitioning of the Silver Code, named Silver Space-Time Trellis Coded Modulation (SST-TCM). This lattice set partitioning is designed specifically to increase the minimum determinant. The branches of the outer trellis code are labeled with these partitions. Viterbi algorithm is applied for trellis decoding, while the branch metrics are computed by using a sphere-decoding algorithm. It is shown that the proposed SST-TCM performs very closely to the Golden Space-Time Trellis Coded Modulation (GST-TCM) scheme, yetwith a much reduced decoding complexity thanks to its fast-decoding property.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents several algorithms for joint estimation of the target number and state in a time-varying scenario. Building on the results presented in [1], which considers estimation of the target number only, we assume that not only the target number, but also their state evolution must be estimated. In this context, we extend to this new scenario the Rao-Blackwellization procedure of [1] to compute Bayes recursions, thus defining reduced-complexity solutions for the multi-target set estimator. A performance assessmentis finally given both in terms of Circular Position Error Probability - aimed at evaluating the accuracy of the estimated track - and in terms of Cardinality Error Probability, aimed at evaluating the reliability of the target number estimates.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The computer code system PENELOPE (version 2008) performs Monte Carlo simulation of coupledelectron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV toabout 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme.Electron and positron histories are generated on the basis of a mixed procedure, which combinesdetailed simulation of hard events with condensed simulation of soft interactions. A geometry packagecalled PENGEOM permits the generation of random electron-photon showers in material systemsconsisting of homogeneous bodies limited by quadric surfaces, i.e., planes, spheres, cylinders, etc. Thisreport is intended not only to serve as a manual of the PENELOPE code system, but also to provide theuser with the necessary information to understand the details of the Monte Carlo algorithm.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cooperative transmission can be seen as a "virtual" MIMO system, where themultiple transmit antennas are in fact implemented distributed by the antennas both at the source and the relay terminal. Depending on the system design, diversity/multiplexing gainsare achievable. This design involves the definition of the type of retransmission (incrementalredundancy, repetition coding), the design of the distributed space-time codes, the errorcorrecting scheme, the operation of the relay (decode&forward or amplify&forward) and thenumber of antennas at each terminal. Proposed schemes are evaluated in different conditionsin combination with forward error correcting codes (FEC), both for linear and near-optimum(sphere decoder) receivers, for its possible implementation in downlink high speed packetservices of cellular networks. Results show the benefits of coded cooperation over directtransmission in terms of increased throughput. It is shown that multiplexing gains areobserved even if the mobile station features a single antenna, provided that cell wide reuse of the relay radio resource is possible.