6 resultados para Thoracic radiography
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Estudi retrospectiu realitzat en dos centres hospitalaris durant el període 1996-2009, per valorar els factors pronòstics de mortalitat a la pneumònia pneumocòccica greu. Van ser inclosos 70 pacients ingressats a unitats de cures intensives amb Streptococcus pneumoniae aïllat a cultiu de sang i amb criteris de pneumònia greu segons la American Thoracic Society. Al nostre estudi, la resistència als macròlids i una alta puntuació als índexs de gravetat APACHE II, SOFA i PSI son factors associats a un major risc de mortalitat en pacients amb pneumònia pneumocòccica greu.
Resumo:
Early detection of breast cancer (BC) with mammography may cause overdiagnosis andovertreatment, detecting tumors which would remain undiagnosed during a lifetime. The aims of this study were: first, to model invasive BC incidence trends in Catalonia (Spain) taking into account reproductive and screening data; and second, to quantify the extent of BC overdiagnosis. We modeled the incidence of invasive BC using a Poisson regression model. Explanatory variables were:age at diagnosis and cohort characteristics (completed fertility rate, percentage of women that use mammography at age 50, and year of birth). This model also was used to estimate the background incidence in the absence of screening. We used a probabilistic model to estimate the expected BC incidence if women in the population usedmammography as reported in health surveys. The difference between the observed and expected cumulative incidences provided an estimate of overdiagnosis.Incidence of invasive BC increased, especially in cohorts born from 1940 to 1955. The biggest increase was observed in these cohorts between the ages of 50 to 65 years, where the final BC incidence rates more than doubled the initial ones. Dissemination of mammography was significantly associated with BC incidence and overdiagnosis. Our estimates of overdiagnosis ranged from 0.4% to 46.6%, for women born around 1935 and 1950, respectively.Our results support the existence of overdiagnosis in Catalonia attributed to mammography usage, and the limited malignant potential of some tumors may play an important role. Women should be better informed about this risk. Research should be oriented towards personalized screening and risk assessment tools
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques
Resumo:
Els objectius del projecte es divideixen en tres blocs: Primerament, realitzar unasegmentació automàtica del contorn d'una imatge on hi ha una massa central. Tot seguit, a partir del contorn trobat, caracteritzar la massa. I finalment, utilitzant les característiques anteriors classificar la massa en benigne o maligne. En el projecte s'utilitza el Matlab com a eina de programació. Concretament les funcions enfocades al processat de imatges del toolbox de Image processing (propi de Matlab) i els classificadors de la PRTools de la Delft University of Technology
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment
Resumo:
Background: Non-invasive monitoring of respiratory muscle function is an area of increasing research interest, resulting in the appearance of new monitoring devices, one of these being piezoelectric contact sensors. The present study was designed to test whether the use of piezoelectric contact (non-invasive) sensors could be useful in respiratory monitoring, in particular in measuring the timing of diaphragmatic contraction.Methods: Experiments were performed in an animal model: three pentobarbital anesthetized mongrel dogs. The motion of the thoracic cage was acquired by means of a piezoelectric contact sensor placed on the costal wall. This signal is compared with direct measurements of the diaphragmatic muscle length, made by sonomicrometry. Furthermore, to assess the diaphragmatic function other respiratory signals were acquired: respiratory airflow and transdiaphragmatic pressure. Diaphragm contraction time was estimated with these four signals. Using diaphragm length signal as reference, contraction times estimated with the other three signals were compared with the contraction time estimated with diaphragm length signal.Results: The contraction time estimated with the TM signal tends to give a reading 0.06 seconds lower than the measure made with the DL signal (-0.21 and 0.00 for FL and DP signals, respectively), with a standard deviation of 0.05 seconds (0.08 and 0.06 for FL and DP signals, respectively). Correlation coefficients indicated a close link between time contraction estimated with TM signal and contraction time estimated with DL signal (a Pearson correlation coefficient of 0.98, a reliability coefficient of 0.95, a slope of 1.01 and a Spearman's rank-order coefficient of 0.98). In general, correlation coefficients and mean and standard deviation of the difference were better in the inspiratory load respiratory test than in spontaneous ventilation tests.Conclusion: The technique presented in this work provides a non-invasive method to assess the timing of diaphragmatic contraction in canines, using a piezoelectric contact sensor placed on the costal wall.