100 resultados para Thermal cycle
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Manufacturing of glass from tin mining tailings in Bolivia Tailings from mining activities in Bolivia represent an environmental problem. In the vicinity of the tin mines of Llallagua,Potosí department, there are large dumps and tailings. We present a study of the use of these wastes as raw materials for the manufacture of glass. This procedure aims to contribute to environmental remediation of mining areas through the vitrification, a process which offers an alternative for stabilization of hazardous waste. In addition, the marketing of the obtained product would provide an additional income to the mining areas. For this study three samples of mining waste, with grain size between sand and silt, were used. The chemical composition of these raw materials, determined by X-ray fluorescence, is granitic, with high contents of heavy metals. On the basis of its composition, glass were made from silica glass by adding CaCO3 and Na2CO3. The thermal cycle has been determined from TDA. Tg values of glass range from 626º to 709 °C. Leaching tests of the obtained glasses confirm their capacity to retain heavy metals.
Resumo:
Manufacturing of glass from tin mining tailings in Bolivia Tailings from mining activities in Bolivia represent an environmental problem. In the vicinity of the tin mines of Llallagua,Potosí department, there are large dumps and tailings. We present a study of the use of these wastes as raw materials for the manufacture of glass. This procedure aims to contribute to environmental remediation of mining areas through the vitrification, a process which offers an alternative for stabilization of hazardous waste. In addition, the marketing of the obtained product would provide an additional income to the mining areas. For this study three samples of mining waste, with grain size between sand and silt, were used. The chemical composition of these raw materials, determined by X-ray fluorescence, is granitic, with high contents of heavy metals. On the basis of its composition, glass were made from silica glass by adding CaCO3 and Na2CO3. The thermal cycle has been determined from TDA. Tg values of glass range from 626º to 709 °C. Leaching tests of the obtained glasses confirm their capacity to retain heavy metals.
Resumo:
Report for the scientific sojourn carried out at Albert Einstein Institut in Germany, from April to July 2006.
Resumo:
We use a threshold seemingly unrelated regressions specification to assess whether the Central and East European countries (CEECs) are synchronized in their business cycles to the Euro-area. This specification is useful in two ways: First, it takes into account the common institutional factors and the similarities across CEECs in their process of economic transition. Second, it captures business cycle asymmetries by allowing for the presence of two distinct regimes for the CEECs. As the CEECs are strongly affected by the Euro-area these regimes may be associated with Euro-area expansions and contractions. We discuss representation, estimation by maximum likelihood and inference. The methodology is illustrated by using monthly industrial production in 8 CEECs. The results show that apart from Lithuania the rest of the CEECs experience “normal” growth when the Euro-area contracts and “high” growth when the Euro-area expands. Given that the CEECs are “catching up” with the Euro-area this result shows that most CEECs seem synchronized to the Euro-area cycle. Keywords: Threshold SURE; asymmetry; business cycles; CEECs. JEL classification: C33; C50; E32.
Resumo:
Thermal systems interchanging heat and mass by conduction, convection, radiation (solar and thermal ) occur in many engineering applications like energy storage by solar collectors, window glazing in buildings, refrigeration of plastic moulds, air handling units etc. Often these thermal systems are composed of various elements for example a building with wall, windows, rooms, etc. It would be of particular interest to have a modular thermal system which is formed by connecting different modules for the elements, flexibility to use and change models for individual elements, add or remove elements without changing the entire code. A numerical approach to handle the heat transfer and fluid flow in such systems helps in saving the full scale experiment time, cost and also aids optimisation of parameters of the system. In subsequent sections are presented a short summary of the work done until now on the orientation of the thesis in the field of numerical methods for heat transfer and fluid flow applications, the work in process and the future work.
Resumo:
We use a dynamic factor model to provide a semi-structural representation for 101 quarterly US macroeconomic series. We find that (i) the US economy is well described by a number of structural shocks between two and six. Focusing on the four-shock specification, we identify, using sign restrictions, two non-policy shocks, demand and supply, and two policy shocks, monetary and fiscal. We obtain the following results. (ii) Both supply and demand shocks are important sources of fluctuations; supply prevails for GDP, while demand prevails for employment and inflation. (ii) Policy matters, Both monetary and fiscal policy shocks have sizeable effects on output and prices, with little evidence of crowding out; both monetary and fiscal authorities implement important systematic countercyclical policies reacting to demand shocks. (iii) Negative demand shocks have a large long-run positive effect on productivity, consistently with the Schumpeterian "cleansing" view of recessions.
Resumo:
In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.
Resumo:
The Great Tohoku-Kanto earthquake and resulting tsunami has brought considerable attention to the issue of the construction of new power plants. We argue in this paper, nuclear power is not a sustainable solution to energy problems. First, we explore the stock of uranium-235 and the different schemes developed by the nuclear power industry to exploit this resource. Second, we show that these methods, fast breeder and MOX fuel reactors, are not feasible. Third, we show that the argument that nuclear energy can be used to reduce CO2 emissions is false: the emissions from the increased water evaporation from nuclear power generation must be accounted for. In the case of Japan, water from nuclear power plants is drained into the surrounding sea, raising the water temperature which has an adverse affect on the immediate ecosystem, as well as increasing CO2 emissions from increased water evaporation from the sea. Next, a short exercise is used to show that nuclear power is not even needed to meet consumer demand in Japan. Such an exercise should be performed for any country considering the construction of additional nuclear power plants. Lastly, the paper is concluded with a discussion of the implications of our findings.
Resumo:
Todos los cuerpos emiten luz espontaneamente al ser calentados. El espectro de radiacion es una funcion de la temperatura y el material. Sin embargo, la mayoria de los materiales irradia, en general, en una banda espectral amplia. Algunas matereiales, por el contrario, son capaces de concentrar la radiacion termica en una banda espectral mucho mas estrecha. Estos materiales se conocen como emisores selectivos y su uso tiene un profundo impacto en la eficiencia de sistemas sistemas tales como iluminacion y conversion de energia termofotovoltaica. De los emisores selectivos se espera que sean capaces de operar a altas temperaturas y que emitan en una banda espectral muy concisa. Uno de los metodos mas prometedores para controlar y disenar el espectro de emision termico es la utilizacion de cristales fotonicos. Los cristales fotonicos son estructuras periodicas artificiales capaces de controlar y confinar la luz de formas sin precedentes. Sin embargo, la produccion de dichas estructuras con grandes superficies y capaces de soportar altas temperaturas sigue siendo una dificil tarea. Este trabajo esta dedicada al estudio de las propiedades de emision termica de estructuras 3D de silicio macroporoso en el rango espectral mid-IR (2-30 m). En particular, este trabajo se enfoca en reducir la elevada emisividad del silicio cristalino. Las muestras estudiadas en este trabajo tienen una periodicidad de 4 m, lo que limitan los resultados obtenidos a la banda del infrarrojo medio, aunque estructuras mucho mas pequenas son tecnologicamente realizables con el metodo de fabricacion utilizado. Hemos demostrado que el silicio macroporoso 3D puede inhibir completamente la emision termica en su superficie. Mas aun, esta banda se puede ajustar en un amplio margen mediante pequenos cambios durante la formacion de los macroporos. Tambien hemos demostrado que tanto el ancho como la frecuencia de la banda de inhibicion se puede doblar mediante la aplicacion de tecnicas de postprocesado adecuadas. Finalmente hemos mostrado que es posible crear bandas de baja emisividad arbitrariamente anchas mediante estructuras macroporosas aperiodicas.
Resumo:
La deformación plástica puede inducir a la transformación de la austenita a martensita en los aceros inoxidables austeníticos metaestables. Para analizar este hecho, el inoxidable austenítico metaestable grado AISI 301 LN fue estudiado en dos condiciones diferentes: recocido y laminado en frío. En el primer caso, el acero era completamente austenítico, mientras que después de la laminación presentaba un importante porcentaje de α’-martensita. Se evaluó el cambio de fase cuando el acero es sometido a ensayos monotónicos y cíclicos, así como cuando ha sido modificada la superficie mediante el granallado o se han realizado tratamientos térmicos de reversión. Se utilizaron diferentes técnicas de caracterización microestructural para detectar y cuantificar la martensita, como microscopía óptica, difracción de rayos-X (DRX) y difracción de electrones retrodispersados (EBSD); como también de caracterización mecánica para evaluar el comportamiento de los aceros, trabajo esencial de fractura (TEF), conformabilidad, fatiga de alto número de ciclos (HCF) y nanoindentación. Los resultados mostraron un incremento en la resistencia mecánica del acero laminado en comparación al acero recocido; este hecho está relacionado con la presencia de martensita originada por la laminación. Sin embargo, en términos de deformación y endurecimiento el acero recocido presenta un mejor desempeño como consecuencia del elevado porcentaje de fase austenítica. Así mismo, revertir la martensita de laminación a austenita y refinar la austenita presente permite obtener un acero con una propiedades mecánicas similares a cuando esta en la condición laminado.
Resumo:
There are many factors that influence the day-ahead market bidding strategies of a generation company (GenCo) in the current energy market framework. Environmental policy issues have become more and more important for fossil-fuelled power plants and they have to be considered in their management, giving rise to emission limitations. This work allows to investigate the influence of both the allowances and emission reduction plan, and the incorporation of the derivatives medium-term commitments in the optimal generation bidding strategy to the day-ahead electricity market. Two different technologies have been considered: the coal thermal units, high-emission technology, and the combined cycle gas turbine units, low-emission technology. The Iberian Electricity Market and the Spanish National Emissions and Allocation Plans are the framework to deal with the environmental issues in the day-ahead market bidding strategies. To address emission limitations, some of the standard risk management methodologies developed for financial markets, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), have been extended. This study offers to electricity generation utilities a mathematical model to determinate the individual optimal generation bid to the wholesale electricity market, for each one of their generation units that maximizes the long-run profits of the utility abiding by the Iberian Electricity Market rules, the environmental restrictions set by the EU Emission Trading Scheme, as well as the restrictions set by the Spanish National Emissions Reduction Plan. The economic implications for a GenCo of including the environmental restrictions of these National Plans are analyzed and the most remarkable results will be presented.
Resumo:
This paper examines the role of human capital, individual entrepreneurial traits and the business environment on firms' life cycle and on job creation in Spain. For this purpose, we have constructed a pseudo-panel, by using the Global Entrepreneurship Monitor survey over the period 2001-2008. We have found that the creation, maturity and survival of firms were aided by the availability of bank credit and the large immigration inflows that Spain received over this period. However, of these two factors, only bank credit had a positive effect on the creation of jobs and on improving expectations of job expansion. The relatively high levels of youth unemployment experienced even before the crises of 2008 hurt the firm's chances of maturity and survival. The results also suggested that the gender gap in entrepreneurial activities had narrowed. In relative terms, women with higher levels of education were more likely to create mature firms than men. Based on the empirical findings and those of related literature, the paper offers policy recommendations to foster a sustainable entrepreneurial sector capable of contributing to the recovery of the Spanish economy.
Resumo:
We study consumption heterogeneity over the business cycle. Using household panel data from 1984 to 2010 in the US we find that the welfare cost of the business cycle is non-negligible, once agents heterogeneity is taken into account, and sums to about 1% of yearly consumption. This is due to the structure of comovements between the different parts of the consumption distribution, in particular the tails are highly volatile and negatively related to each other. We also find that business cycle fluctuations originating from exogenous financial shocks only hit the top end of the consumption distribution and therefore reduce consumption inequality.
Resumo:
Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC
Resumo:
Using data from the Spanish household budget survey, we investigate life- cycle effects on several product expenditures. A latent-variable model approach is adopted to evaluate the impact of income on expenditures, controlling for the number of members in the family. Two latent factors underlying repeated measures of monetary and non-monetary income are used as explanatory variables in the expenditure regression equations, thus avoiding possible bias associated to the measurement error in income. The proposed methodology also takes care of the case in which product expenditures exhibit a pattern of infrequent purchases. Multiple-group analysis is used to assess the variation of key parameters of the model across various household life-cycle typologies. The analysis discloses significant life-cycle effects on the mean levels of expenditures; it also detects significant life-cycle effects on the way expenditures are affected by income and family size. Asymptotic robust methods are used to account for possible non-normality of the data.