36 resultados para TTR AMYLOID INHIBITOR
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Amyloid β-peptide (Aβ) fibril deposition on cerebral vessels produces cerebral amyloid angiopathy that appears in the majority of Alzheimer's disease patients. An early onset of a cerebral amyloid angiopathy variant called hereditary cerebral hemorrhage with amyloidosis of the Dutch type is caused by a point mutation in Aβ yielding AβGlu22→Gln. The present study addresses the effect of amyloid fibrils from both wild-type and mutated Aβ on vascular cells, as well as the putative protective role of antioxidants on amyloid angiopathy. For this purpose, we studied the cytotoxicity induced by Aβ1–40 Glu22→Gln and Aβ1–40 wild-type fibrils on human venule endothelial cells and rat aorta smooth muscle cells. We observed that AβGlu22→Gln fibrils are more toxic for vascular cells than the wild-type fibrils. We also evaluated the cytotoxicity of Aβ fibrils bound with acetylcholinesterase (AChE), a common component of amyloid deposits. Aβ1–40 wild-type–AChE fibrillar complexes, similar to neuronal cells, resulted in an increased toxicity on vascular cells. Previous reports showing that antioxidants are able to reduce the toxicity of Aβ fibrils on neuronal cells prompted us to test the effect of vitamin E, vitamin C, and 17β-estradiol on vascular damage induced by Aβwild-type and AβGlu22→Gln. Our data indicate that vitamin E attenuated significantly the Aβ-mediated cytotoxicity on vascular cells, although 17β-estradiol and vitamin C failed to inhibit the cytotoxicity induced by Aβ fibrils.
Resumo:
Brain acetylcholinesterase (AChE) forms stable complexes with amyloid-beta peptide (Abeta) during its assembly into filaments, in agreement with its colocalization with the Abeta deposits of Alzheimer's brain. The association of the enzyme with nascent Abeta aggregates occurs as early as after 30 min of incubation. Analysis of the catalytic activity of the AChE incorporated into these complexes shows an anomalous behavior reminiscent of the AChE associated with senile plaques, which includes a resistance to low pH, high substrate concentrations, and lower sensitivity to AChE inhibitors. Furthermore, the toxicity of the AChE-amyloid complexes is higher than that of the Abeta aggregates alone. Thus, in addition to its possible role as a heterogeneous nucleator during amyloid formation, AChE, by forming such stable complexes, may increase the neurotoxicity of Abeta fibrils and thus may determine the selective neuronal loss observed in Alzheimer's brain.
Resumo:
The clinical picture of 15 patients (10 male, five female) with amyloid arthropathy secondary to chronic renal failure treated with haemodialysis has been studied. The average period of haemodialysis was 10.8 years. Joint symptoms appeared between three and 13 years after starting haemodialysis. No patient had renal amyloidosis. Early symptoms were varied and often overlapped: knee swelling (seven patients), painful and stiff shoulders (seven), and carpal tunnel syndrome (six) were the most prominent. Follow up showed extension to other joints. Joint effusions were generally of the non-inflammatory type. Radiologically, geodes and erosions of variable sizes were seen in the affected joints, which can develop into a destructive arthropathy. Amyloid was found in abdominal fat in three of the 12 patients on whom a needle aspiration was performed. Four of 12 patients showed changes compatible with amyloid infiltration in the echocardiogram. One patient had amyloid in the gastric muscular layer, another in the colon mucus, and two of four in rectal biopsy specimens. Amyloid deposits showed the presence of beta 2 microglobulin in 10 patients. The clinical and radiological picture was similar to the amyloid arthropathy associated with multiple myeloma. These patients can develop systemic amyloidosis.
Resumo:
Alzheimer"s disease and prion pathologies (e.g., Creutzfeldt-Jakob disease) display profound neural lesions associated with aberrant protein processing and extracellular amyloid deposits. For APP processing, emerging data suggest that the adaptor protein Dab1 plays a relevant role in regulating its intracellular trafficking and secretase-mediated proteolysis. Although some data have been presented, a putative relationship between human prion diseases and Dab1/APP interactions is lacking. Therefore, we have studied the putative relation between Dab1, APP processing and Aβ deposition, targets in sCJD cases. Our biochemical results categorized two groups of sCJD cases, which also correlated with PrPsc types 1 and 2 respectively. One group, with PrPsc type 1 showed increased Dab1 phosphorylation, and lower βCTF production with an absence of Aβ deposition. The second sCJD group, which carried PrPsc type 2, showed lower levels of Dab1 phosphorylation and βCTF production, similar to control cases. Relevant Aβ deposition in the second sCJD group was measured. Thus, a direct correlation between Dab1 phosphorylation, Aβ deposition and PrPsc type in human sCJD is presented for the first time.
Resumo:
P27(Kip1) (p27) is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Recently, a new function of p27 as transcriptional regulator has been reported. It has been shown that p27 regulates the expression of target genes mostly involved in splicing, cell cycle, respiration and translation. We report here that p27 directly binds to the transcriptional coactivator PCAF by a region including amino acids 91-120. PCAF associates with p27 through its catalytic domain and acetylates p27 at lysine 100. Our data showed that overexpression of PCAF induces the degradation of p27 whereas in contrast, the knockdown of PCAF stabilizes the protein. A p27 mutant in which K100 was substituted by arginine (p27-K100R) cannot be acetylated by PCAF and has a half-life much higher than that of p27WT. Moreover, p27-K100R remains stable along cell-cycle progression. Ubiquitylation assays and the use of proteasome inhibitors indicate that PCAF induces p27 degradation via proteasome. We also observed that knockdown of skp2 did not affect the PCAF induced degradation of p27. In conclusion, our data suggest that the p27 acetylation by PCAF regulates its stability.
Resumo:
We show that external fluctuations induce excitable behavior in a bistable spatially extended system with activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excitable pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous nucleation of pulses and synchronized firing.
Resumo:
The clinical picture of 15 patients (10 male, five female) with amyloid arthropathy secondary to chronic renal failure treated with haemodialysis has been studied. The average period of haemodialysis was 10.8 years. Joint symptoms appeared between three and 13 years after starting haemodialysis. No patient had renal amyloidosis. Early symptoms were varied and often overlapped: knee swelling (seven patients), painful and stiff shoulders (seven), and carpal tunnel syndrome (six) were the most prominent. Follow up showed extension to other joints. Joint effusions were generally of the non-inflammatory type. Radiologically, geodes and erosions of variable sizes were seen in the affected joints, which can develop into a destructive arthropathy. Amyloid was found in abdominal fat in three of the 12 patients on whom a needle aspiration was performed. Four of 12 patients showed changes compatible with amyloid infiltration in the echocardiogram. One patient had amyloid in the gastric muscular layer, another in the colon mucus, and two of four in rectal biopsy specimens. Amyloid deposits showed the presence of beta 2 microglobulin in 10 patients. The clinical and radiological picture was similar to the amyloid arthropathy associated with multiple myeloma. These patients can develop systemic amyloidosis.
Resumo:
Seven patients (five male and two female) with chronic renal failure (CRF) treated by periodical haemodialysis presented with swelling and effusion of more than three months' duration in knees (four bilateral), shoulders (two, one of them bilateral), elbow (one), and ankle (one). Four had a carpal tunnel syndrome both clinically and electromyographically (three bilateral). All patients had hyperparathyroidism secondary to their CRF, which was not due to amyloidosis in any of them. The dialysis duration period varied from five to 14 years, with an average of 8.6 years. Amyloid deposits (Congo red positive areas with green birefringence under polarising microscopy) were shown in six of the seven synovial biopsy specimens of the knee, in five of the sediments of the synovial fluids, and in specimens removed during carpal tunnel syndrome surgery. No amyloid was found in the biopsy specimen of abdominal fat of six of the patients. The finding of amyloid only in the synovial membrane and fluid, and carpal tunnel, its absence in abdominal fat, and the lack of other manifestations of generalised amyloidosis (cardiomyopathy, malabsorption syndrome, macroglossia, etc.) and of Bence Jones myeloma (protein immunoelectrophoresis normal) raises the possibility that this is a form of amyloidosis which is peculiar to CRF treated by periodical haemodialysis.