13 resultados para TRANSPORTERS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.
Resumo:
Estudi elaborat a partir dâuna estada a la School of Life Sciences de la University of Dundee, Gran Bretanya, entre gener i març del 2007.L'estrès osmòtic causa rà pidament l'activació de la quinasa WNK1, que fosforila i activa a continuació les quinases SPAK i OSR1, que alhora regulen canals i transportadors dâions preexistents a la membrana celâ¢lular. El factor de transcripció NFAT5 és el principal regulador de la resposta celâ¢lular transcripcional secundà ria a hipertonicitat i sâha descrit que les quinases p38, Fyn, PKA, ERK/MEK i ATM estan involucrades en la seva regulació post-traduccional. No obstant, com que la funció dâaquestes quinases no explica totalment els mecanismes d'activació de NFAT5, sâha estudiat si lâactivitat transcripcional de NFAT5 pot estar regulada per WNK1, SPAK o OSR1. Aixà doncs, es va observar que lâactivitat dâun reporter dependent de NFAT5 no es veu afectada per la presència de cap de les quinases anteriors, en la seva forma wild-type o dominant negatiu. Dâaltra banda, es va estudiar quin domini de WNK1 és necessari per a que pugui respondre a hipertonicitat i quines quinases poden estar involucrades en la fosforilació de la serina 382 de WNK1. En conclusió, les dades obtingudes apunten que lâactivació de WNK1 en resposta a estrès osmòtic requereix la seva fosforilació en la serina 382 per quinases upstream com PAK2 o RSK i que també és necessari un dels seus dominis coiled-coil, almenys els aminoà cids 558 i 561. Aquests processos, però, semblen ser independents de lâactivació de NFAT5 en resposta a hipertonicitat. ââ
Resumo:
Muscle is a major player in metabolism. It uses large amounts of glucose in the absorptive state and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. Lipid substrates such as fatty acids or ketone bodies are preferentially used by muscle in certain physiological conditions. Muscle is also the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters such as glucose carriers, carnitine, creatine or amino acid transporters maintain muscle metabolism by taking up or releasing substrates or metabolites across the cell surface. The goal of this review is the molecular characterization of muscle membrane transporter proteins and the analysis of their regulatory roles.
Resumo:
Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are drugs widely abused in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS) production seems to be one of the main causes. Recent research has demonstrated that blockade of 7 nicotinic acetylcholine receptors (nAChR) inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, 7 nAChR antagonists (methyllycaconitine and memantine) attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to 7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on 7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on 7 and heteromeric nAChR populations have been found.
Resumo:
Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.
Resumo:
Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.
Resumo:
Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.
Resumo:
Se determinó la excreción urinaria de nitrógeno (NU, %) y de energía (EU, kcal/100g), en la última semana de vida, de 36 conejos alimentados, desde el destete (a los 28 d) hasta el sacrificio a los dos meses de edad, con tres piensos conteniendo 0, 3 y 6 % de grasa añadida (G0, G3 y G6); y administrados a dos niveles de ingestión: ad libitum (IL) y restringido (IR) al 70 % de IL. El NU y la EU estuvieron influidos positivamente tanto por el nivel de ingestión (P<0,001) como por el % de grasa ingerida (P<0,05). En estos resultados puede estar involucrado el metabolismo tan elevado de las lipoproteínas transportadoras de lípidos, implicadas en el metabolismo de las grasas, ya sean de origen alimentario o de la lipogénesis de novo. La relación entre la EU y el NU aporta valores muy superiores a los que podría corresponder a las materias orgánicas nitrogenadas, por lo que se podría pensar, como posible causa, en la intervención de materia orgánica no nitrogenada. Asimismo, la cuantificación de la EM del pienso se ve afectada por el incremento del valor calórico de la orina, con el nivel de ingestión y/o el 6 % de grasa añadida. Con ello se evidencia la desigualdad entre ED y EM de la grasa en las raciones que las incluya. Asimismo, el hecho de que la movilización grasa —bien sea de origen alimentario o de la lipogénesis— altere la excreción nitrogenada y/o energética a través de la orina, pone de manifiesto la importancia de su consideración, especialmente cuando dicha pérdida puede afectar a los rendimientos de algunas producciones animales.
Resumo:
Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs play specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP ribose) polymerase hyperactivation and cell death, and reduced tumor growth and cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. These data predict a novel and totally unexpected biological role for the nucleoside transporter protein hCNT1 that appears to be independent of its role as mediator of nucleoside uptake by cells, thereby suggesting a transceptor function. Cell Death & Disease Anastasis Stephanou Receiving Editor Cell Death & Disease 19th Apr 2013 Dr Perez-Torras Av/ Diagonal 643. Edif. Prevosti, Pl -1 Barcelona 08028 Spain RE: Manuscript CDDIS-13-0136R, 'CDDIS-13-0136R' Dear Dr Perez-Torras, It is a pleasure to inform you that your manuscript has been evaluated at the editorial level and has now been officially accepted for publication in Cell Death & Disease, pending you meet the following editorial requirements: 1) the list of the abbreviations is missing please include Could you send us the revised text as word file via e-mail and we will proceed and transfer the paper onto our typesetters. Please download, print, sign, and return the Licence to Publish Form using the link below. This must be returned via FAX to ++ 39 06 7259 6977 before your manuscript can be published:
Resumo:
Nicotine (NIC), the main psychostimulant compound of smoked tobacco, exerts its effects through activation of central nicotinic acetylcholine receptors (nAChR), which become up-regulated after chronic administration. Recent work has demonstrated that the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) has affinity for nAChR and also induces up-regulation of nAChR in PC 12 cells. Tobacco and MDMA are often consumed together. In the present work we studied the in vivo effect of a classic chronic dosing schedule of MDMA in rats, alone or combined with a chronic schedule of NIC, on the density of nAChR and on serotonin reuptake transporters. MDMA induced significant decreases in [3H]paroxetine binding in the cortex and hippocampus measured 24 h after the last dose and these decreases were not modified by the association with NIC. In the prefrontal cortex, NIC and MDMA each induced significant increases in [3H]epibatidine binding (29.5 and 34.6%, respectively) with respect to saline-treated rats, and these increases were significantly potentiated (up to 72.1%) when the two drugs were associated. Also in this area, [3H]methyllycaconitine binding was increased a 42.1% with NIC + MDMA but not when they were given alone. In the hippocampus, MDMA potentiated the a7 regulatory effects of NIC (raising a 25.5% increase to 52.5%) but alone was devoid of effect. MDMA had no effect on heteromeric nAChR in striatum and a coronal section of the midbrain containing superior colliculi, geniculate nuclei, substantia nigra and ventral tegmental area. Specific immunoprecipitation of solubilised receptors suggests that the up-regulated heteromeric nAChRs contain a4 and b2 subunits. Western blots with specific a4 and a7 antibodies showed no significant differences between the groups, indicating that, as reported for nicotine, up-regulation caused by MDMA is due to post-translational events rather than increased receptor synthesis.
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP